Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T12:20:40.626Z Has data issue: false hasContentIssue false

Mechanism of grain growth in liquid-phase-sintered β–SiC

Published online by Cambridge University Press:  31 January 2011

Young-Wook Kim*
Affiliation:
Department of Materials Science and Engineering, The University of Seoul, 90 Jeonnong-Dong, Dongdaemon-Ku, Seoul 130–743, Korea
Mamoru Mitomo
Affiliation:
National Institute for Research in Inorganic Materials, Tsukuba-shi, Ibaraki 305–0044, Japan
Guo-Dong Zhan
Affiliation:
National Institute for Research in Inorganic Materials, Tsukuba-shi, Ibaraki 305–0044, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The mechanism for grain growth of β–SiC was investigated by annealing hot-pressed β–SiC–oxynitride glass (Y–Mg–Si–Al–O–N) ceramics at 1800 °C. An observed decrease in grain growth with increasing weight fraction of liquid confirms a diffusion-controlled growth mechanism in the system. The growth of nearly spherical β–SiC grains in the annealed specimen also supports the above conclusion.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Padture, P., J. Am. Ceram. Soc. 77, 519 (1994).Google Scholar
2.Mulla, M.A. and Krstic, V.D., J. Mater. Sci. 29, 934 (1994).CrossRefGoogle Scholar
3.Cao, J.J., MoberlyChan, W.J., De Jonghe, L.C., Gilbert, C.J., and Ritchie, R.O., J. Am. Ceram. Soc. 79, 461 (1996).CrossRefGoogle Scholar
4.Kim, Y-W., Mitomo, M., and Hirotsuru, H., J. Am. Ceram. Soc. 80, 99 (1997).CrossRefGoogle Scholar
5.Mulla, M.A. and Krstic, V.D., Acta Mater. 42, 303 (1994).Google Scholar
6.Padture, N.P. and Lawn, B.R., J. Am. Ceram. Soc. 77, 2518 (1994).CrossRefGoogle Scholar
7.Kim, Y-W., Mitomo, M., and Hirotsuru, H., J. Am. Ceram. Soc. 78, 3145 (1995).Google Scholar
8.Sigl, L.S. and Kleebe, H.J., J. Am. Ceram. Soc. 76, 773 (1993).CrossRefGoogle Scholar
9.Keppeler, M., Reichert, H-G., Broadley, J.M., Thurn, G., Wiedmann, I., and Aldinger, F., J. Eur. Ceram. Soc. 18, 521 (1998).Google Scholar
10.Kim, J.Y., Kim, Y-W., Mitomo, M., Zhan, G.D., and Lee, J.G., J. Am. Ceram. Soc. 82, 441 (1999).CrossRefGoogle Scholar
11.Ye, H., Pujar, V.V., and Padture, N.P., Acta Mater. 47, 481 (1999).Google Scholar
12.Warren, R. and Waldron, M.B., Powder Metall. 15, 166 (1972).Google Scholar
13.Warren, R., J. Mater. Sci. 7, 1434 (1972).CrossRefGoogle Scholar
14.Mitomo, M., Kim, Y-W., and Hirotsuru, H., J. Mater. Res. 11, 1601 (1996).Google Scholar
15.Kim, Y-W. and Mitomo, M., J. Am. Ceram. Soc. (in press).Google Scholar
16.Rouxel, T. and Verdier, P., Acta Mater. 44, 2217 (1996).Google Scholar
17.Baron, B., Chartier, T., Rouxel, T., Verdier, P., and Laurent, Y., J. Eur. Ceram. Soc. 17, 773 (1997).CrossRefGoogle Scholar
18.Han, J.H. and Kim, D-Y., Acta Mater. 43, 3185 (1995).CrossRefGoogle Scholar
19.Lee, D-D., Kang, S.J.L, and Yoon, D.N., J. Am. Ceram. Soc. 71, 803 (1988).Google Scholar