Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T05:35:56.583Z Has data issue: false hasContentIssue false

Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica

Published online by Cambridge University Press:  31 January 2011

Liang Cheng
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
Liyun Wang
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
Anette M. Karlsson*
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We explore key mechanical responses of the layered microstructure found in selected parts of the exoskeletons (pronotum, leg and elytron) of Popillia japonica (Japanese beetle). Image analyses of exoskeleton cross-sections reveal four distinct layered regions. The load-bearing inner three regions (exocuticle, mesocuticle, and endocuticle) consist of multiple chitin-protein layers, in which chitin fibers align in parallel. The exocuticle and mesocuticle have a helicoidal structure, where the stacking sequence is characterized by a gradual rotation of the fiber orientation. The endocuticle has a pseudo-orthogonal structure, where two orthogonal layers are joined by a thin helicoidal region. The mechanics-based analyses suggest that, compared with the conventional cross-ply structure, the pseudo-orthogonal configuration reduces the maximum tensile stress over the exoskeleton cross-section and increases the interfacial fracture resistance. The coexistence of the pseudo-orthogonal and helicoidal structures reveals a competition between the in-plane isotropy and the interfacial strength in nature’s design of the biocomposite.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Andersen, S.O.: Biochemistry of insect cuticle. Annu. Rev. Entomol. 24, 29 (1979).CrossRefGoogle Scholar
2.Neville, A.C.: Biology of the Arthropod Cuticle, 2nd ed. (Springer-Verlag, New York, 1975).CrossRefGoogle Scholar
3.Cheng, L., Wang, L.Y., and Karlsson, A.M.: Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior. J. Mater. Res. 23(11), 2854 (2008).CrossRefGoogle Scholar
4.Schultz, T.D. and Rankin, M.A.: The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cicindela). J. Exp. Biol. 117(Jul), 87 (1985).CrossRefGoogle Scholar
5.Vincent, J.F.V. and Wegst, U.G.K.: Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33(3), 187 (2004).CrossRefGoogle ScholarPubMed
6.Wegst, U.G.K. and Ashby, M.F.: The mechanical efficiency of natural materials. Philos. Mag. 84(21), 2167 (2004).CrossRefGoogle Scholar
7.Nishino, T., Matsui, R., and Nakamae, K.: Elastic modulus of the crystalline regions of chitin and chitosan. J. Polym. Sci., Part B: Polym. Phys. 37(11), 1191 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
8.Vincent, J.F.V.: Arthropod cuticle: A natural composite shell system. Composites Part A 33(10), 1311 (2002).CrossRefGoogle Scholar
9.Xu, W., Mulhern, P.J., Blackford, B.L., Jericho, M.H., and Templeton, I.: A new atomic-force microscopy technique for the measurement of the elastic properties of biological-materials. Scanning Microsc. 8(3), 499 (1994).Google Scholar
10.Neville, A.C., Parry, D.A.D., and Woodheadgalloway, J.: Chitin crystallite in arthropod cuticle. J. Cell Sci. 21(1), 73 (1976).CrossRefGoogle ScholarPubMed
11.Vincent, J.F.V.: Insect cuticle: A paradigm for natural composites. Symp. Soc. Exp. Biol. 34, 183 (1980).Google ScholarPubMed
12.Bouligan, Y.: Twisted fibrous arrangements in biological-materials and cholesteric mesophases. Tissue Cell 4(2), 189 (1972).CrossRefGoogle Scholar
13.Bruet, B.J.F., Song, J.H., Boyce, M.C., and Ortiz, C.: Materials design principles of ancient fish armour. Nat. Mater. 7(9), 748 (2008).CrossRefGoogle ScholarPubMed
14.Gunderson, S. and Schiavone, R.: The insect exoskeleton—A natural structural composite. JOM 41(11), 60 (1989).CrossRefGoogle Scholar
15.Hepburn, H.R. and Ball, A.: Structure and mechanical properties of beetle shells. J. Mater. Sci. 8(5), 618 (1973).CrossRefGoogle Scholar
16.Raabe, D., Sachs, C., and Romano, P.: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater. 53(15), 4281 (2005).CrossRefGoogle Scholar
17.Zelazny, B. and Neville, A.C.: Quantitative studies on fibril orientation in beetle endocuticle. J. Insect Physiol. 18(11), 2095 (1972).CrossRefGoogle Scholar
18.Sugawara, A., Nishimura, T., Yamamoto, Y., Inoue, H., Nagasawa, H., and Kato, T.: Self-organization of oriented calcium carbonate/polymer composites: Effects of a matrix peptide isolated from the exoskeleton of a crayfish. Angew. Chem. Int. Ed. 45(18), 2876 (2006).CrossRefGoogle ScholarPubMed
19.Weiner, S. and Addadi, L.: Design strategies in mineralized biological materials. J. Mater. Chem. 7(5), 689 (1997).CrossRefGoogle Scholar
20.Bruet, B.J.F., Qi, H.J., Boyce, M.C., Panas, R., Tai, K., Frick, L., and Ortiz, C.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20(9), 2400 (2005).CrossRefGoogle Scholar
21.Neville, A.C. and Luke, B.M.: Molecular architecture of adult locust cuticle at the electron microscope level. Tissue Cell 1(2), 355 (1969).CrossRefGoogle ScholarPubMed
22.Barbakadze, N., Enders, S., Gorb, S., and Arzt, E.: Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 209(4), 722 (2006).CrossRefGoogle Scholar
23.Chen, P.Y., Lin, A.Y.M., McKittrick, J., and Meyers, M.A.: Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4(3), 587 (2008).CrossRefGoogle ScholarPubMed
24.Lindley, V.A.: A new procedure for handling impervious biological specimens. Microsc. Res. Tech. 21(4), 355 (1992).CrossRefGoogle ScholarPubMed
25.Reynolds, E.S.: Use of lead citrate at high ph as an electronopaque stain in electron microscopy. J. Cell Biol. 17(1), 208 (1963).CrossRefGoogle ScholarPubMed
26.Gorb, S.N.: Porous channels in the cuticle of the head-arrester system in dragon/damselflies (Insecta: Odonata). Microsc. Res. Tech. 37(5–6), 583 (1997).3.0.CO;2-M>CrossRefGoogle ScholarPubMed
27.Hild, S., Marti, O., and Ziegler, A.: Spatial distribution of calcite and amorphous calcium carbonate in the cuticle of the terrestrial crustaceans Porcellio scaber and Armadillidium vulgare. J. Struct. Biol. 163(1), 100 (2008).CrossRefGoogle ScholarPubMed
28.Bobelmann, F., Romano, P., Fabritius, H., Raabe, D., and Epple, M.: The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim. Acta 463(1–2), 65 (2007).CrossRefGoogle Scholar
29.Fratzl, P., Burgert, I., and Gupta, H.S.: On the role of interface polymers for the mechanics of natural polymeric composites. Phys. Chem. Chem. Phys. 6(24), 5575 (2004).CrossRefGoogle Scholar
30.Hillerton, J.E.: Electron-microscopy of fibril-matrix interactions in a natural composite, insect cuticle. J. Mater. Sci. 15(12), 3109 (1980).CrossRefGoogle Scholar
31.Fabritius, H.O., Sachs, C., Triguero, P.R., and Raabe, D.: Influence of structural principles on the mechanics of a biological fiberbased composite material with hierarchical organization: The exoskeleton of the lobster Homarus americanus. Adv. Mater. 21(4), 391 (2009).CrossRefGoogle Scholar
32.Fritsch, A., Dormieux, L., Hellmich, C., and Sanahuja, J.: Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: Fundamentals and application to strength of hydroxyapatite biomaterials. J. Mater. Sci. 42(21), 8824 (2007).CrossRefGoogle Scholar
33.Hellmich, C., Barthelemy, J.F., and Dormieux, L.: Mineral-collagen interactions in elasticity of bone ultrastructure—A continuum micromechanics approach. Eur. J. Mech. A, Solids 23(5), 783 (2004).CrossRefGoogle Scholar
34.Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis, 2nd ed. (CRC Press, New York, 1997).Google Scholar
35. ABAQUS 6.7 (ABAQUS Inc., Pawtucket, RI, 2007).Google Scholar
36.Renton, W.J. and Vinson, J.R.: On the behavior of bonded joints in composite material structures. Eng. Fract. Mech. 7, 41 (1975).CrossRefGoogle Scholar
37.Hutchinson, J.W. and Suo, Z.: Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992).CrossRefGoogle Scholar