Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T04:41:53.507Z Has data issue: false hasContentIssue false

Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes

Published online by Cambridge University Press:  31 January 2011

M. Mata
Affiliation:
Department of Materials Science and Metallurgical Engineering, Escola Tecnica Superior d'Enginyers Industrials de Barcelona (E.T.S.E.I.B.), Universitat Politècnica de Catalunya, 08028-Barcelona, Spain
J. Alcalá
Affiliation:
Department of Materials Science and Metallurgical Engineering, Escola Tecnica Superior d'Enginyers Industrials de Barcelona (E.T.S.E.I.B.), Universitat Politècnica de Catalunya, 08028-Barcelona, Spain
Get access

Abstract

Following the finite element simulations in our earlier work about the contact deformation regimes, mathematical formulations were derived to correlate hardness and the amount of pileup and sinking-in phenomena around sharp indenters with uniaxial mechanical properties. The formulations are applicable regardless of the deformation regime ruling the contact response of a strain-hardening solid. A methodology was devised where the use of these formulations in mechanical property assessments from indentation experiments was demonstrated. The current results make contact with existing methodologies using the II-theorem in functional analysis to extract uniaxial properties from instrumented indentation load depth of penetration curves. It is argued that since surface deformation is an essential feature of the contact response, it enters directly or indirectly in such existing methodologies. The paper considers how independent knowledge of surface deformation can be used to guide mechanical property assessments from load-depth of penetration curves. A discussion on the uniqueness of mechanical characterizations through indentation experiments is also provided.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mata, J., Anglada, M., and Alcalá, J., J. Mater. Res. 17, 964 (2002).Google Scholar
2.Tabor, D., Hardness of Metals, Clarendon Press, Oxford, U.K., 1951.Google Scholar
3.O'Neill, H., Hardness Measurements of Metals and Alloys, (Chapman Hall, NJ, 1951).Google Scholar
4.Doener, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).Google Scholar
5.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
6.Cheng, Y.T. and Cheng, C.M., J. Appl. Phys. 84, 1284 (1998).Google Scholar
7.Cheng, Y.T. and Cheng, C.M., Appl. Phys. Lett. 73, 614 (1998).CrossRefGoogle Scholar
8.Cheng, Y.T. and Cheng, C.M., Int. J. Solids Struct. 36, 1231 (1999).Google Scholar
9.Cheng, Y.T. and Cheng, C.M., J. Mater. Res. 14, 3493 (1999).Google Scholar
10.Alcalá, J., Giannakopoulos, A.E., and Suresh, S., J. Mater. Res. 13, 1390 (1998).Google Scholar
11.Suresh, S., Alcalá, J., and Giannakopoulos, A.E., U.S. Patent No. 6 134 954 (2000).Google Scholar
12.Alcalá, J., J. Am. Ceram. Soc. 83, 1977 (2000).CrossRefGoogle Scholar
13.Dao, M., Chollacoop, N., Vliet, K.J. van, Venkatesh, T.A., and Suresh, S., Acta Mater. 49, 3899 (2001).Google Scholar
14.Tunvisut, K., O'Dowd, N.P, and Busso, E.P., Int. J. Solids Struct. 38, 335 (2001).Google Scholar
15.Tunvisut, K., Busso, E.P., O'Dowd, N.P, and Brantner, H.P., Philos. Mag. 82, 2013 (2002).Google Scholar
16.Alcalá, J., Gaudette, F., Suresh, S., and Sampath, S., Mater. Sci. Eng. A 316, 1 (2001).CrossRefGoogle Scholar
17.Mata, M., Anglada, M., and Alcalá, J., Philos. Mag. A 82, 1831 (2002).Google Scholar
18.Alcalá, J., Barone, A.C., and Anglada, M., Acta Mater. 48, 3451 (2000).Google Scholar
19.Matsuda, K., Philos. Mag. A 82, 1941 (2002).CrossRefGoogle Scholar
20.Mata, M. and Alcalá, J., J. Mech. Phys. Solids (in press).Google Scholar
21.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).Google Scholar
22.Randall, N.X., Philos. Mag. A 82, 1883 (2002).Google Scholar