Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T12:54:03.177Z Has data issue: false hasContentIssue false

Mechanical properties of vertically aligned single-crystalline silicon nanowire arrays

Published online by Cambridge University Press:  05 May 2011

Ana Cuevas
Affiliation:
Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Física Aplicada & Ingeniería Química, Universidad de Málaga, Málaga 29071, Spain
Enrique Ariel Dalchiele
Affiliation:
Instituto de Física, Facultad de Ingeniería, Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Ricardo Marotti
Affiliation:
Instituto de Física, Facultad de Ingeniería, Herrera y Reissig 565, C.C. 30, 11000 Montevideo, Uruguay
Dietmar Leinen
Affiliation:
Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Física Aplicada & Ingeniería Química, Universidad de Málaga, Málaga 29071, Spain
José Ramón Ramos-Barrado
Affiliation:
Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Física Aplicada & Ingeniería Química, Universidad de Málaga, Málaga 29071, Spain
Francisco Martin*
Affiliation:
Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Física Aplicada & Ingeniería Química, Universidad de Málaga, Málaga 29071, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single-crystalline p-type silicon nanowire (SiNW) arrays have been formed by electroless metal deposition on a silicon wafer piece in an ionic Ag/fluorhydric acid (HF) solution through selective etching. They display mechanical properties that are different from those of both bulk silicon and single SiNWs. As any practical application of these materials is likely to involve a large number of nanowires in close proximity to each other, it is necessary to understand the mechanical properties of SiNW arrays. In this work, as a first step to characterize their mechanical properties, the buckling instabilities of the surfaces formed by vertically aligned SiNWs have been studied by nanoindentation tests.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, N., Cai, Y., and Zhang, R.Q.: Growth of nanowires. Mater. Sci. Eng. 60, 1 (2008).CrossRefGoogle Scholar
2.Schmidt, V., Wittemann, J.V., and Gösele, U.: Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110, 361 (2010).CrossRefGoogle ScholarPubMed
3.Perraud, S., Poncet, S., Noël, S., Levis, M., Faucherand, P., Rouviére, E., Thony, P., Jaussaud, C., and Delsol, R.: Full process for integrating silicon nanowire arrays into solar cells. Sol. Energy Mater. Sol. Cells 93, 1568 (2009).CrossRefGoogle Scholar
4.Huang, J.S., Hsiao, C.Y., Syu, S.J., Chao, J.J., and Lin, C.F.: Well-aligned single crystalline silicon nanowire hybrid solar cells on glass. Sol. Energy Mater. Sol. Cells 93, 621 (2009).CrossRefGoogle Scholar
5.Jeon, M., and Kamisako, K.. Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application. Mater. Lett. 63, 777 (2009).CrossRefGoogle Scholar
6.Dalchiele, E.A., Leinen, F.M.D., Marotti, R.E., and Ramos-Barrado, J.R.: Single-crystalline silicon nanowire array-based photoelectrochemical cells. J. Electrochem. Soc. 156, K77 (2009).CrossRefGoogle Scholar
7.Lu, M., Li, M.K., Kong, L.B., Guo, X.Y., and Li, H.L.: Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties. Chem. Phys. Lett. 374, 542 (2003).CrossRefGoogle Scholar
8.Yu, D.P., Lee, C.S., and Bello, I.: Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature. Solid State Commun. 105, 403 (1998).CrossRefGoogle Scholar
9.Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
10.Yu, J.Y., Chang, S.W., and Heath, J.R.: Silicon naowires: Preparation, device fabrication, and transport properties. J. Phys. Chem. B 104, 11864 (2000).CrossRefGoogle Scholar
11.Dalchiele, E.A., Martín, F., Leinen, D., Marotti, R.E., and Ramos-Barrado, J.R.: Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowires arrays. Thin Solid Films 518, 1804 (2010).CrossRefGoogle Scholar
12.Teo, B.K., Huang, S.P., Zhang, R.Q., and Li, W.K.: Theoretical calculations of structures and properties of one-dimensional nanomaterials: Particularities and peculiarities of silicon and silicon containing nanowires and nanotubes. Coord. Chem. Rev. 253, 2935 (2009).CrossRefGoogle Scholar
13.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
14.Sohn, Y.S., Park, J., Yoon, G., Song, J., Jee, S.W., Lee, J.H., Na, S., Kwon, T., and Eom, K.: Mechanical properties of silicon nanowires. Nanoscale Res. Lett. 5, 211 (2010).CrossRefGoogle Scholar
15.Heidelberg, A., Ngo, L.T., Wu, B., Phillips, M., Sharma, S., Kamins, T.I., Ader, J.E., and Boland, J.J.: A generalized description of the elastic properties of nanowires. Nano Lett. 6, 1101 (2006).CrossRefGoogle ScholarPubMed
16.Hsin, C.L., Mai, W., Gu, Y., Gao, Y., Huang, C.T., Liu, Y., Chen, L.J., and Wang, Z.L.: Elastic properties and buckling of silicon nanowires. Adv. Mater. (Deerfield Beach Fla.) 20, 3919 (2008).CrossRefGoogle Scholar
17.Chang, N.K., Lin, Y.S., Chen, C.Y., and Chang, S.H.: Determining Modulus of nanowires using nanoindentation technique, in Proceedings of the 7th IEEE Conference on Nanotechnology, 837, 2007.Google Scholar
18.Young, S.J., Ji, L.W., Ghang, S.J., Fang, T.H., Hsueh, T.J., Meen, T.H., and Chen, I.C.: Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO: Ga/glass templates. Nanotechnology 18, 225603 (2007).CrossRefGoogle Scholar
19.Ji, L.W., Young, S.J., Fang, T.H., and Liu, C.H.: Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl. Phys. Lett. 90, 33109 (2007).CrossRefGoogle Scholar
20.Riaz, M., Nur, O., Willander, M., and Klason, P.: Buckling of ZnO nanowires under uniaxial compression. Appl. Phys. Lett. 92, 103118 (2008).CrossRefGoogle Scholar
21.Riaz, M., Fulati, A., Yang, L.L., Nur, O., Willander, M., and Klason, P.: Bending flexibility, kimking, and buckling characterization of ZnO nanorods/nanowires grown on different substrates by high and low temperature methods. J. Appl. Phys. 104, 104306 (2008).CrossRefGoogle Scholar
22.Nisbett, K. and Budynas, R.: Shigley’s Mechanical Engineering Design, 8th ed. (McGraw Hill, 2006), pp. 177184.Google Scholar
23.San Paulo, A., Bokor, J., Howe, R.T., He, R., Yang, P., Gao, D., Carraro, C., and Maboudian, R.: Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor-liquid-solid method. Appl. Phys. Lett. 87, 053111 (2005).CrossRefGoogle Scholar
24.Lehmann, V.: Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications (Wiley-VCH, Verlag GmbH, Weinheim, Federal Republic of Germany, 2002), p. 5.CrossRefGoogle Scholar
25.Jain, S.C., Willander, M., and Overstraeten, E.: V Compound Semiconductors Strained Layers and Devices (Kluwer Academic Publication Group, Springer-Verlag, New York, 2000).CrossRefGoogle Scholar
26.Ma, L., Wang, J., Zhao, J., and Wang, G.: Anisotropy in stability and Young’s modulus of hydrogenated silicon nanowires. Chem. Phys. Lett. 452, 183 (2008).CrossRefGoogle Scholar
27.Lee, B. and Rudd, R.E.: First-principles study of the Young’s modulus of Si <001> nanowires. Phys. Rev. B 75, 041305 (2007).CrossRefGoogle Scholar
28.Kang, M.K., Li, B., Ho, P.S., and Huang, R.: Buckling of single-crystal silicon nanolines under indentation. J. Nanomaterials 132728, 11 (2008).Google Scholar
29.Jing, Y., Meng, Q., and Gao, Y.: Molecular dynamics simulation on the buckling behavior of silicon nanowires under uniaxial compression. Comput. Mater. Sci. 45, 321 (2009).CrossRefGoogle Scholar
30.Collins, J.G., Giardini, W.J., Leistner, A.J., and Kenny, M.J.: The influence of Young’s modulus on roundness in silicon sphere fabrication. IEEE Trans. Instrum. Meas. 46, 572 (1997).CrossRefGoogle Scholar