Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T11:21:44.246Z Has data issue: false hasContentIssue false

Mechanical properties of single-quasicrystalline AlCuCoSi

Published online by Cambridge University Press:  31 January 2011

R. Wittmann
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, W-5170 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, W-5170 Jülich, Germany
M. Schandl
Affiliation:
Lehrstuhl Werkstoffwissenschaft, Ruhr-Universität Bochum, Postfach 102148, W-4630 Bochum, Germany
E. Hornbogen
Affiliation:
Lehrstuhl Werkstoffwissenschaft, Ruhr-Universität Bochum, Postfach 102148, W-4630 Bochum, Germany
Get access

Abstract

The mechanical properties of single-quasicrystals of decagonal AlCoCuSi have been studied for the first time by applying the Vickers indentation method. The hardness has been determined as H ≃ 9.6 MPa. Estimates for the modulus of elasticity and the fracture toughness are given. The quasicrystals are highly strained internally. Scratching experiments show slight anisotropies in the abrasive friction coefficient. The dominant abrasive mechanism is microplowing.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 19511953 (1984).CrossRefGoogle Scholar
2.Introduction to Quasicrystals (Aperiodicity and Order, Vol. 1), edited by Jarić, M. V. (Academic Press, New York, 1988).Google Scholar
3.Janot, C. and Dubois, J. M., J. Phys. F 18, 23032343 (1988).CrossRefGoogle Scholar
4.The Physics of Quasicrystals, edited by Steinhardt, P. J. and Ostlund, S. (World Scientific, Singapore, 1987).CrossRefGoogle Scholar
5.Bhaduri, S. B. and Sekhar, J. A., Nature 327, 609610 (1987).CrossRefGoogle Scholar
6.Birge, N. O., Golding, B., Haemmerle, W. H., Chen, H. S., and Parsey, J. M., Phys. Rev. B 36, 76857688 (1987).CrossRefGoogle Scholar
7.Reynolds, G. A. M., Golding, B., Kortan, A. R., and Parsey, J. M., Phys. Rev. B 41, 11941195 (1990).CrossRefGoogle Scholar
8.VanCleve, J. E., Gershenfeld, N. A., Knorr, K., and Bancel, P. A., Phys. Rev. B 41, 980990 (1990).CrossRefGoogle Scholar
9.Koizumi, H. and Suzuki, T., Non-Cryst. Solids 117/118, 801803 (1990).CrossRefGoogle Scholar
10.Audier, M. and Guyot, P., Acta Metall. 36, 13211328 (1988).CrossRefGoogle Scholar
11.He, L. X., Wu, K., Meng, M., and Kuo, K. H., Philos. Mag. Lett. 61, 1519 (1990).CrossRefGoogle Scholar
12.Kortan, A. R., Thiel, F. A., Chen, H. S., Tsai, A. P., Inoue, A., and Masumoto, T., Phys. Rev. B 40, 93979399 (1989).CrossRefGoogle Scholar
13.Zhang, D., Lu, L., Wang, X., Lin, S., He, L. X., and Kuo, K. H., Phys. Rev. B 41, 85578559 (1990).Google Scholar
14.Lin, S., Wang, X., Li, L., Zhang, D., He, L. X., and Kuo, K. H., Phys. Rev. B 41, 96259627 (1990).Google Scholar
15.Nocker, H. and Hornbogen, E., Pract. Metallography 26, 455463 (1989).CrossRefGoogle Scholar
16.Lawn, B. R. and Howes, V. R., J. Mater. Sci. 16, 27452752 (1981).CrossRefGoogle Scholar
17.Niihara, K., Morena, R., and Hasselman, D. P. H., J. Mater. Sci. Lett. 1, 1316 (1982).CrossRefGoogle Scholar
18.Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 2nd ed. (John Wiley, New York, 1983).Google Scholar
19.Kumpfert, J., Diploma thesis, Ruhr-Universität Bochum, 1989.Google Scholar
20.Schandl, M., Vollmer, H., and Hornbogen, E. (unpublished material).Google Scholar
21.Zhang, Z. and Urban, K., Philos. Mag. Lett. 60, 97102 (1989).CrossRefGoogle Scholar