Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T04:21:45.231Z Has data issue: false hasContentIssue false

Mechanical properties and microstructures of metal/ceramic microlaminates: Part I. Nb/MoSi2 systems

Published online by Cambridge University Press:  31 January 2011

T.C. Chou
Affiliation:
Lockheed Missiles and Space Company, Inc., Research and Development Division, O/93-10, B/204, Palo Alto, California 94304
T.G. Nieh
Affiliation:
Lockheed Missiles and Space Company, Inc., Research and Development Division, O/93-10, B/204, Palo Alto, California 94304
T.Y. Tsui
Affiliation:
Department of Materials Science, Rice University, P.O. Box 1892, Houston, Texas 77251
G.M. Pharr
Affiliation:
Department of Materials Science, Rice University, P.O. Box 1892, Houston, Texas 77251
W.C. Oliver
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6116
Get access

Abstract

Artificial multilayers, or microlaminates, composed of alternating layers of Nb and MoSi2 of equal thickness were synthesized by d.c., magnetron sputtering. Four different modulation wavelengths, λ, were studied: 7, 11, 20, and 100 nm. The compositions, periodicities, and microstructures of the microlaminates were characterized by Auger electron spectroscopy and transmission electron microscopy. Structural characterization revealed that the as-deposited Nb layers are polycrystalline, while the MoSi2 layers are amorphous. The hardnesses and elastic moduli of the films were measured using nanoindentation techniques. Neither a supermodulus nor a superhardness effect could be identified in the range of wavelengths investigated; for each of the microlaminates, both the hardness and modulus were found to fall between the bounds set by the properties of the monolithic Nb and MoSi2 films. Nevertheless, a modest but a measurable increase in both hardness and modulus with decreasing wavelength was observed, thus indicating that behavior cannot be entirely described by a simple rule-of-mixtures. The hardness was found to vary linearly with Δ−1/2 in a manner similar to the Hall–Petch relationship. Annealing the microlaminates at 800 °C for 90 min produces significant increases in hardness and modulus due to chemical interaction of the layers.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schuller, I. K., Fartash, A., and Grimsditch, M., Elastic Anomalies in Superlattices, 33-37, Interfaces part II, MRS Bulletin, October 1990.CrossRefGoogle Scholar
2McWhan, D. B., Synthetic Modulated Structures, edited by Chang, L. L. and Giesser, B.C. (Academic Press, New York, 1985), p. 43.CrossRefGoogle Scholar
3Sato, N., J. Appl. Phys. 59, 2514 (1986).CrossRefGoogle Scholar
4Falco, C. M. and Schuller, I. K., Synthetic Modulated Structures (Academic Press, New York, 1985), p. 339.CrossRefGoogle Scholar
5Barbee, T.W., Proc. Soc. Photo-opt. Instrum. Eng. 563, 2 (1985).Google Scholar
6Spiller, E., AIP Conf. Proc. 75, 12 (1981).Google Scholar
7Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 54, 734 (1983).CrossRefGoogle Scholar
8Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. B., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
9Yang, W. M. C., Tsakalakos, T., and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).CrossRefGoogle Scholar
10Schuller, I. K. and Grimsditch, M., J. Vac. Sci. Technol. B4, 1444 (1986).Google Scholar
11Fartash, A., Fullerton, E.E., Schuller, I. K., Bobbin, S.E., Wagner, R.W., Cammarata, J. C., Kumar, S., and Grimsditch, M., Phys. Rev. B 44, 13760 (1991).CrossRefGoogle Scholar
12Clemens, B. and Eesley, G., Phys. Rev. Lett. 61, 2356 (1988).CrossRefGoogle Scholar
13Khan, R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).CrossRefGoogle Scholar
14Doerner, M. F., Ph.D. Dissertation (Stanford University, 1987).Google Scholar
15“Research Opportunities for Materials with Ultrafine Micro-structures,” National Research Council (NMAB-454, National Academy Press, Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145, 1987), p. 78.Google Scholar
16Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J-E., Markert, L. C., and Greene, J.E., J. Appl. Phys. 62, 481 (1987).CrossRefGoogle Scholar
17Tsakalakos, T. and Jankowski, A. F., Annu. Rev. Mater. Sci. 16, 293 (1986).CrossRefGoogle Scholar
18Jankowski, A. F. and Tsakalakos, T., J. Phys. F 15, 1279 (1985).CrossRefGoogle Scholar
19Cammarata, R. C. and Sieradzki, K., Phys. Rev. Lett. 62, 2005 (1989).CrossRefGoogle Scholar
20Wu, T.B., J. Appl. Phys. 53, 5265 (1982).Google Scholar
21Pickett, W.E., J. Phys. F 12, 2195 (1982).CrossRefGoogle Scholar
22Banerjea, A. and Smith, J. R., Phys. Rev. B 35, 5413 (1987).CrossRefGoogle Scholar
23Huberman, M. L. and Grimsditch, M., Phys. Rev. Lett. 62, 1403 (1989).CrossRefGoogle Scholar
24Cammarata, R. C., Scripta Metall. 20, 479 (1986).CrossRefGoogle Scholar
25Baumann, T., Pethica, J.B., Grimsditch, M., and Schuller, I.K., in Interfaces, Superlattices, and Thin Films, edited by Dow, J. D. and Schuller, I. K. (Mater. Res. Soc. Symp. Proc. 77, Pittsburgh, PA, 1987), p. 527.Google Scholar
26Berry, B. S. and Pritchet, W. C., Thin Solid Films 33, 191 (1976).CrossRefGoogle Scholar
27Testardi, L. R., Willens, R. M., Krause, J. T., McWhan, D. B., and Nakahara, S., J. Appl. Phys. 52, 510 (1981).CrossRefGoogle Scholar
28Mattson, J., Bhadra, R., Ketterson, J.B., Brodsky, M.B., and Grimsditch, M., J. Appl. Phys. 67, 2873 (1990).Google Scholar
29Baker, S.P., Jankowski, A.F., Hong, S., and Nix, W.D, in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 289.Google Scholar
30Davis, B.M., Seidman, D.N., Moreau, A., Ketterson, J.B., Mattson, J., and Grimsditch, M., Phys. Rev. B 43, 9304 (1991).Google Scholar
31Lehoczky, S.L., J. Appl. Phys. 49, 5479 (1978).CrossRefGoogle Scholar
32Tench, D. and White, J., Metall. Trans. 15A, 2039 (1984).Google Scholar
33Bunshah, R. F., Nimmagadda, R., Doerr, H. J., Movchan, B. A., Grechanuk, N. I., and Dabizha, E. V., Thin Solid Films 72, 261 (1980).CrossRefGoogle Scholar
34Bunshah, R. F., Nimmagadda, R., Doerr, H. J., Movchan, B. A., Grechanuk, N. I., and Didkin, G. G., Thin Solid Films 112, 227 (1984).CrossRefGoogle Scholar
35Sans, C., Deshpandey, C., Doerr, H.J., Bunshah, R.F., Movchan, B.A., and Demchishin, A. V., Thin Solid Films 107, 345 (1983).CrossRefGoogle Scholar
36Parker, C.A., Metall. Trans. 16A, 1693 (1985).Google Scholar
37Nieh, T. G. and Wadsworth, J., Scripta Met. et Mat. 25, 955 (1991).CrossRefGoogle Scholar
38McAdams, S.D., M.S. Thesis (Rice University, 1991).Google Scholar
39Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
40Hardness Testing, edited by Boyer, H. E. (ASM INTERNATIONAL, Metals Park, OH, 1987).Google Scholar
41Chou, T. C. and Nieh, T.G., Thin Solid Films (in press).Google Scholar
42Lynch, J. F., Ruderer, C. G., and Duckworth, W. H., “Engineering Properties of Ceramics,” Technical Report Air Force Materials Laboratory (AFML)-TR-66-52 (Defense Documentation Center, Cameron Station, Alexandria, VA, 1967), p. 5.7.35.Google Scholar
43Nakamura, M., Matsumoto, S., and Hirano, T., J. Mater. Sci. 25, 3309 (1990).Google Scholar
44Fitzer, E. and Kehr, D., Thin Solid Films 39, 55 (1976).CrossRefGoogle Scholar
45Fitzer, E. and Remmele, W., Proc. 5th Int. Conf. on Composite Materials ICCM-V (TMS, Warrendale, PA, 1985), p. 515.Google Scholar
46Lu, T. C., Evans, A. G., Hecht, R. J., and Mehrabian, R., Acta Metall. 39, 1853 (1991).Google Scholar