Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T04:04:12.409Z Has data issue: false hasContentIssue false

Mechanical properties and anisotropy of thermal conductivity of Fe3–x Crx O4 (x = 0–3)

Published online by Cambridge University Press:  17 November 2016

Yangzhen Liu
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
Jiandong Xing
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
Yefei Li*
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
Jun Tan
Affiliation:
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
Liang Sun
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
Jingbo Yan
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The ground state properties of Fe3−x Crx O4 (x = 0–3) compounds were studied using first principles calculation. Stress–strain methods were used to evaluate elastic constants of these compounds. These compounds are mechanically stable structures, because they satisfy the mechanical stability criteria. The mechanical moduli were estimated using the Voigt–Reuss–Hill approximation. The calculated bulk moduli of Fe3O4, Fe2CrO4, FeCr2O4, and Cr3O4 are 190.9 GPa, 135.5 GPa, 180.1 GPa, and 235.6 GPa, respectively. Both of anisotropic indexes and 3-D surface contour were used to illustrate the elastic anisotropy. Debye temperature and anisotropy of acoustic velocity of Fe3−x Crx O4 compounds were also investigated. The maximum Debye temperature is attributing to Cr3O4 with 507.6 K among Fe3−x Crx O4 compounds. The minimum thermal conductivity of Fe3−x Crx O4 compounds was estimated by both Clarke's model and Cahill's model. Moreover, 3-D surface contour of the anisotropic thermal conductivity of Fe3−x Crx O4 compounds was obtained based on the Clarke's model and anisotropic Young's modulus.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Viswanathan, R. and Bakker, W.: Materials for ultrasupercritical coal power plants-boiler materials: Part 1. J. Mater. Eng. Perform. 10(1), 8195 (2001).CrossRefGoogle Scholar
Shen, Q. and Liu, H.G.: Application of new type heat-resistant steel T/P92 and T/P122 in ultra-supercritical unit and quality control. Elec. Power Const. 31(10), 7175 (2010).Google Scholar
Viswanathan, R., Sarver, J., and Tanzosh, J.M.: Boiler materials for ultra-supercritical coal power plants—Steamside oxidation. J. Mater. Eng. Perform. 15(3), 255274 (2006).CrossRefGoogle Scholar
Li, X.M., Zou, Y., Zhang, Z.W., Zou, Z.D., and Du, B.S.: Intergranular corrosion of weld metal of super type 304H steel during 650 °C aging. Corrosion 68(5), 379387 (2012).CrossRefGoogle Scholar
Zhao, S.Q., Xie, X.S., and Smith, G.D.: The oxidation behavior of the new nickel-based superalloy Inconel 740 with and without Na2SO4 deposit. Surf. Coat. Technol. 185(2), 178183 (2004).CrossRefGoogle Scholar
Pantleon, K. and Montgomery, M.: Phase identification and internal stress analysis of steamside oxides on plant exposed superheater tubes. Metall. Mater. Trans. A 43(5), 14771486 (2012).CrossRefGoogle Scholar
Masrour, R., Hlil, E.K., Hamedoun, M., Benyoussef, A., Mounkachi, O., and Moussaoui, H.E.: Electronic and magnetic structures of Fe3O4 ferrimagnetic investigated by first principle, mean field and series expansions calculations. J. Magn. Magn. Mater. 378, 3740 (2015).CrossRefGoogle Scholar
Jeng, H.T., Guo, G.Y., and Huang, D.J.: Charge-orbital ordering and Verwey transition in magnetite. Phys. Rev. Lett. 93(15), 156403 (2004).CrossRefGoogle ScholarPubMed
Wang, Y., Lee, S.H., Zhang, L.A., Shang, S.L., Chen, L.Q., Kovacs, A.D., and Liu, Z.K.: Quantifying charge ordering by density functional theory: Fe3O4 and CaFeO3 . Chem. Phys. Lett. 607, 8184 (2014).CrossRefGoogle Scholar
Mohammadi, A., Barikani, M., and Barmar, M.: Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polym. Bull. 72(2), 219234 (2015).CrossRefGoogle Scholar
Lin, C.R., Chu, Y.M., and Wang, S.C.: Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater. Lett. 60(4), 447450 (2006).CrossRefGoogle Scholar
Sato, T., Iijima, T., Seki, M., and Inagaki, N.: Magnetic properties of ultrafine ferrite particles. J. Magn. Magn. Mater. 65(2), 252256 (1987).CrossRefGoogle Scholar
Odkhuu, D., Taivansaikhan, P., Yun, W.S., and Hong, S.C.: A first-principles study of magnetostrictions of Fe3O4 and CoFe2O4 . J. Appl. Phys. 115(17), 17A916 (2014).CrossRefGoogle Scholar
Cheng, Y.H., Li, L.Y., Wang, W.H., Liu, H., Ren, S.W., Cui, X.Y., and Zheng, R.K.: Tunable electrical and magnetic properties of half-metallic Zn x Fe3−x O4 from first principles. Phys. Chem. Chem. Phys. 13, 2124321247 (2011).CrossRefGoogle Scholar
Fonin, M., Pentcheva, R., Dedkov, Y.S., Sperlich, M., Vyalikh, D.V., Scheffler, M., Rüdiger, U., and Güntherodt, G.: Surface electronic structure of the Fe3O4(100): Evidence of a half-metal to metal transition. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 104436 (2005).CrossRefGoogle Scholar
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14(11), 27172744 (2002).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter Mater. Phys. 41(11), 78927895 (1990).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 38653868 (1996).CrossRefGoogle ScholarPubMed
Liu, Y.Z., Jiang, Y.H., Feng, J., and Zhou, R.: Elasticity, electronic properties and hardness of MoC investigated by first principles calculations. Phys. B 419, 4550 (2013).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 13(12), 51885192 (1976).CrossRefGoogle Scholar
Fast, L., Wills, J.M., Johansson, B., and Eriksson, O.: Elastic constants of hexagonal transition metals: Theory. Phys. Rev. B: Condens. Matter Mater. Phys. 51(24), 1743117438 (1995).CrossRefGoogle ScholarPubMed
Liu, Y.Z., Jiang, Y.H., Xing, J.D., Zhou, R., and Feng, J.: Mechanical properties and electronic structures of M23C6 (M = Fe, Cr, Mn)-type multicomponent carbides. J. Alloys Compd. 648, 874880 (2015).CrossRefGoogle Scholar
Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J., and Eriksson, O.: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 . J. Appl. Phys. 84(9), 48914904 (1998).CrossRefGoogle Scholar
Xiao, B., Feng, J., Zhou, C.T., Jiang, Y.H., and Zhou, R.: Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides. J. Appl. Phys. 109(2), 023507 (2011).CrossRefGoogle Scholar
Wu, J., Chong, X.Y., Zhou, R., Jiang, Y.H., and Feng, J.: Structure, stability, mechanical and electronic properties of Fe–P binary compounds by first-principles calculations. RSC Adv. 5, 8194381956 (2015).CrossRefGoogle Scholar
He, T.W., Jiang, Y.H., Zhou, R., and Feng, J.: The electronic structure, mechanical and thermodynamic properties of Mo2XB2 and MoX2B4 (X = Fe, Co, Ni) ternary borides. J. Appl. Phys. 118, 075902 (2015).CrossRefGoogle Scholar
Hu, C.Q., Gao, Z.H., and Yang, X.R.: Fabrication and magnetic properties of Fe3O4 octahedra. Chem. Phys. Lett. 429(5), 513517 (2006).CrossRefGoogle Scholar
Roldan, A., Carballal, D.S., and Leeuw, N.H.D.: A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4 . J. Chem. Phys. 138(20), 204712 (2013).CrossRefGoogle ScholarPubMed
Reichmann, H.J. and Jacobsen, S.D.: High-pressure elasticity of a natural magnetite crystal. Am. Mineral. 89(7), 10611066 (2004).CrossRefGoogle Scholar
Jiang, X., Zhao, J.J., and Jiang, X.: Correlation between hardness and elastic moduli of the covalent crystals. Comput. Mater. Sci. 50(7), 22872290 (2011).CrossRefGoogle Scholar
Korozlu, N., Colakoglu, K., Deligoz, E., and Aydin, S.: The elastic and mechanical properties of MB12 (M = Zr, Hf, Y, Lu) as a function of pressure. J. Alloys Compd. 546, 157164 (2013).CrossRefGoogle Scholar
Pugh, S.F.: Predicted studies of semiconductors. Philos. Mag. 45, 823843 (1954).CrossRefGoogle Scholar
Fu, C.L. and Yoo, M.H.: Electronic structure and mechanical behavior of transition-metal aluminides: A first-principles total-energy investigation. Mater. Chem. Phys. 32(1), 2536 (1992).CrossRefGoogle Scholar
Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8(4), 345349 (1992).CrossRefGoogle Scholar
Ranganathan, S.I. and Starzewski, M.O.: Universal elastic anisotropy index. Phys. Rev. Lett. 101(5), 055504 (2008).CrossRefGoogle ScholarPubMed
Wang, J.M. and Sun, J.F.: Elastic and thermodynamic properties of IrN2 under pressure. Phys. Status Solidi B 247(4), 921926 (2010).CrossRefGoogle Scholar
Feng, J., Xiao, B., Chen, J., Du, Y., Yu, J., and Zhou, R.: Stability, thermal and mechanical properties of Pt x Al y compounds. Mater. Des. 32(6), 32313239 (2011).CrossRefGoogle Scholar
Feng, J., Xiao, B., Zhou, R., Pan, W., and Clarke, D.R.: Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Mater. 60, 33803392 (2012).CrossRefGoogle Scholar
Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coating. Surf. Coat. Technol. 163, 6774 (2003).CrossRefGoogle Scholar
Cahill, D.G., Watson, S.K., and Pohl, R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 46(10), 61316140 (1992).CrossRefGoogle Scholar
Feng, J., Xiao, B., Zhou, R., and Pan, W.: Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr. Mater. 68(9), 727730 (2013).CrossRefGoogle Scholar