Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T05:17:33.404Z Has data issue: false hasContentIssue false

Measurement of the work function of Y1Ba2Cu3O7−δ under ambient conditions

Published online by Cambridge University Press:  31 January 2011

Jon DeVries
Affiliation:
Harvey Mudd College, Claremont, California 91711
Steve S. Wakisaka
Affiliation:
Harvey Mudd College, Claremont, California 91711
Erik R. Spjut
Affiliation:
Harvey Mudd College, Claremont, California 91711
Get access

Abstract

The photoelectric work function of samples of Y1Ba2Cu3O7−δ of approximately 40 μm diameter was measured under ambient temperature and atmosphere in an electrodynamic balance. The measured values had an average of 4.98 eV and a standard deviation of 0.24 eV. The minimum value was 4.46 eV and the maximum was 5.52 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vedula, Y. S.Mesyats, V. G.Poplavskii, V. V. and Shkuratov, S. I.Sov. Tech. Phys. Lett. 15 (10), 797798 (1989).Google Scholar
2Anderson, P. A.Phys. Rev. 47, 958964 (1935).Google Scholar
3Koshida, N. and Saito, K.Jpn. J. Appl. Phys. Part 29 (9) (1990).Google Scholar
4Derieux, J.B.Phys. Rev. 11, 276284 (1918).Google Scholar
5Kelly, M.J.Phys. Rev. 16, 260273 (1920).CrossRefGoogle Scholar
6Schmidt-Ott, A. and Siegmann, H. C.Appl. Phys. Lett. 32 (11), 710713 (1978).CrossRefGoogle Scholar
7Weurker, R. F.Shelton, H. and Langmuir, R. V.J. Appl. Phys. 30 (3), 342349 (1959).CrossRefGoogle Scholar
8Philip, M. A.Gelbard, F. and Arnold, S.J. Colloid Interface Sci. 91, 507515 (1983).Google Scholar
9Davis, E. J. and Ray, A. K.J. Colloid Interface Sci. 75, 566 (1980).CrossRefGoogle Scholar
10Richardson, C. B. and Spann, J.F.J. Aerosol Sci. 15 (5), 19 (1984).Google Scholar
11Bar-Ziv, E., Jones, D.B.Spjut, R.E., Dudek, D.R.Sarofim, A.F. and Longwell, J.P.Combustion and Flame 75 (1), 81106 (1989).CrossRefGoogle Scholar
12Arnold, S.Hsieh, K. T. and Pope, M.Phys. Status Solidi B 94, 263272 (1979).CrossRefGoogle Scholar
13Arnold, S.J. Chem. Phys. 76, 38423843 (1982).CrossRefGoogle Scholar
14Jin, X.F.Zelinski, M. and Pope, M.Chem. Phys. Lett. 119, 173176 (1985).CrossRefGoogle Scholar
15Arnold, S. and Hessel, N.Rev. Sci. Instrum. 56 (11), 20662069 (1985).CrossRefGoogle Scholar
16Arnold, S. and Hessel, N.Rev. Sci. Instrum. 57, 993 (1986).Google Scholar
17Fowler, R.M.Phys. Rev. 38, 4556 (1931).CrossRefGoogle Scholar
18Formenko, V. S.Handbook of Thermionic Properties, 1st ed. (Plenum Press Data Division, New York, 1966), p. 150.Google Scholar