Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T01:22:05.772Z Has data issue: false hasContentIssue false

Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology

Published online by Cambridge University Press:  03 March 2011

W.C. Oliver
Affiliation:
MTS Systems Corporation, Oak Ridge, Tennessee, 37830
G.M. Pharr*
Affiliation:
The University of Tennessee and Oak Ridge National Laboratory, Department of Materials Science and Engineering, Knoxville, Tennessee 37996
*
a)This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html
Get access

Abstract

The method we introduced in 1992 for measuring hardness and elastic modulus by instrumented indentation techniques has widely been adopted and used in the characterization of small-scale mechanical behavior. Since its original development, the method has undergone numerous refinements and changes brought about by improvements to testing equipment and techniques as well as from advances in our understanding of the mechanics of elastic–plastic contact. Here, we review our current understanding of the mechanics governing elastic–plastic indentation as they pertain to load and depth-sensing indentation testing of monolithic materials and provide an update of how we now implement the method to make the most accurate mechanical property measurements. The limitations of the method are also discussed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
2.Pharr, G.M., Oliver, W.C. and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
3.Pethica, J.B., Hutchings, R and Oliver, W.C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
4.Frolich, F., Grau, P. and Grellmann, W., Phys. Status Solidi 42, 79 (1977).CrossRefGoogle Scholar
5.Newey, D., Wilkins, M.A. and Pollock, H.M., J. Phys. E: Sci. Instrum. 15, 119 (1982).CrossRefGoogle Scholar
6.Pharr, G.M. and Oliver, W.C., MRS Bull. 17, 28 (1992).CrossRefGoogle Scholar
7.Pharr, G.M., Mater. Sci. Eng. A 253, 151 (1998).CrossRefGoogle Scholar
8.Shen, T.D., Koch, C.C., Tsui, T.Y. and Pharr, G.M., J. Mater. Res. 10, 2892 (1995).CrossRefGoogle Scholar
9.Stone, D., LaFontaine, W.R., Alexopoulos, P., Wu, T.W. and Li, C-Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
10.Nix, W.D., Metall. Trans. 20A, 2217 (1989).CrossRefGoogle Scholar
11.Hainsworth, S.V., Chandler, H.W. and Page, T.F., J. Mater. Res. 11, 1987 (1996).CrossRefGoogle Scholar
12.Tabbal, M., Merel, P., Chaker, M., El Khakani, M.A., Herbert, E.G., Lucas, B.N. and O’Hern, M.E., J. Appl. Phys. 85, 3860 (1999).CrossRefGoogle Scholar
13.Hainsworth, S.V., McGurk, M.R. and Page, T.F., Surf. Coat. Technol. 102, 97 (1998).CrossRefGoogle Scholar
14.Tsui, T.Y. and Pharr, G.M., J. Mater. Res. 14, 292 (1999).CrossRefGoogle Scholar
15.Tsui, T.Y., Vlassak, J.J. and Nix, W.D., J. Mater. Res. 14, 2196 (1999).CrossRefGoogle Scholar
16.Bec, S., Tonck, A., Georges, J-M., Georges, E. and Loubet, J-L., Philos. Mag. A 74, 1061 (1996).CrossRefGoogle Scholar
17.Randall, N.X., Philos. Mag. A 82, 1883 (2002).CrossRefGoogle Scholar
18.Lim, Y.Y. and Chaudhri, M.M., J. Mater. Res 14, 2314 (1999).CrossRefGoogle Scholar
19.Miyahara, K., Nagashima, N. and Matsuoka, S., Philos. Mag. A 82, 2149 (2002).CrossRefGoogle Scholar
20.Saha, R. and Nix, W.D., Acta Mater. 50, 23 (2002).CrossRefGoogle Scholar
21.Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C. and Friedman, T.A., J. Appl. Phys. 85, 1460 (1999).CrossRefGoogle Scholar
22.Page, T.F., Pharr, G.M., Hay, J.C., Oliver, W.C., Lucas, B.N., Herbert, E. and Riester, L. in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 53.Google Scholar
23.Mencik, J., Munz, D., Quandt, E., Weppelmann, E.R. and Swain, M.V., J. Mater. Res. 12, 2475 (1997).CrossRefGoogle Scholar
24.Lucas, B.N., Oliver, W.C. and Swindeman, J.E. in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 3.Google Scholar
25.Bolshakov, A. and Pharr, G.M., J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
26.Hay, J.C., Bolshakov, A. and Pharr, G.M., J. Mater. Res. 14, 2296 (1999).CrossRefGoogle Scholar
27.Laursen, T.A. and Simo, J.C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
28.Gao, H., Chui, C-H. and Lee, J., Int. J. Solids Structures 29, 2471 (1992).Google Scholar
29.Cheng, Y-T. and Cheng, C-M., J. Appl. Phys. 84, 1284 (1998).CrossRefGoogle Scholar
30.Cheng, Y-T. and Cheng, C-M., Int. J. Solids Structures 36, 1231 (1999).CrossRefGoogle Scholar
31.Cheng, Y-T. and Cheng, C-M., Appl. Phys. Lett. 73, 614 (1998).CrossRefGoogle Scholar
32.Larsson, P-L., Giannakopoulos, A.E., Soderlund, E., Rowcliffe, D.J. and Vestergaard, R., Int. J. Solids Structures 33, 221 (1996).CrossRefGoogle Scholar
33.Mesarovic, S.D.J. and Fleck, N.A., Proc. R. Soc London A 455, 2707 (1999).CrossRefGoogle Scholar
34.Taljat, B., Zacharia, T. and Pharr, G.M. in Fundamentals of Nano-indentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 33.Google Scholar
35.Pharr, G.M. and Bolshakov, A., J. Mater. Res. 17, 2660 (2002).CrossRefGoogle Scholar
36.Bolshakov, A., Oliver, W.C. and Pharr, G.M. in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and rgesen, P. B (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 675.Google Scholar
37.McElhaney, K.W., Vlassak, J.J. and Nix, W.D., J. Mater. Res. 13, 1300 (1998).CrossRefGoogle Scholar
38.Loubet, J-L., Lucas, B.N., and Oliver, W.C., NIST Special Publication 896: International Workshop on Instrumented Indentation (National Institute of Standards and Technology, San Diego, CA, 1995), pp. 3134.Google Scholar
39.Lucas, B.N., Rosenmayer, C.T. and Oliver, W.C. in Thin Films—Stresses and Mechanical Properties VII, edited by Cammarata, R.C., Nastasi, M., Busso, E.P., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrebdale, PA, 1998), p. 97.Google Scholar
40.Poisl, W.H., Oliver, W.C. and Fabes, B.D., J. Mater. Res. 10, 2024 (1995).CrossRefGoogle Scholar
41.Lucas, B.N., Oliver, W.C., Loubet, J-L. and Pharr, G.M. in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J.E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233.Google Scholar
42.Lucas, B.N. and Oliver, W.C., Metall. Mater. Trans. 30A, 601 (1999).CrossRefGoogle Scholar
43.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
44.Sneddon, I.N., Int. J. Eng. Sci 3, 47 (1965).CrossRefGoogle Scholar
45.Love, A.E.H., Q.J. Math. 10, 161 (1939).CrossRefGoogle Scholar
46.Love, A.E.H., Philos. Trans. A 228, 377 (1929).Google Scholar
47.Harding, J.W. and Sneddon, I.N., Proc. Cambridge Phil. Soc. 41, 16 (1945).CrossRefGoogle Scholar
48.Sneddon, I.N., Fourier Transforms (McGraw-Hill, New York, 1951), pp. 450467.Google Scholar
49.Woirgard, J. and Dargenton, J-C., J. Mater. Res. 12, 2455 (1997).CrossRefGoogle Scholar
50.Cheng, C-M. and Cheng, Y-T., Appl. Phys. Lett. 71, 2623 (1997).CrossRefGoogle Scholar
51.Gao, H. and Wu, T-W., J. Mater. Res. 8, 3229 (1993).CrossRefGoogle Scholar
52.Hertz, H., Miscellaneous Papers by H. Hertz (Macmillan, London, 1896).Google Scholar
53.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
54.Field, J.S. and Swain, M.V., J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
55.Field, J.S. and Swain, M.V., J. Mater. Res. 10, 101 (1995).CrossRefGoogle Scholar
56.Hay, J.L., Oliver, W.C., Bolshakov, A. and Pharr, G.M. in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 101.Google Scholar
57.Hay, J.L. and Pharr, G.M., in ASM Handbook Volume 8: Mechanical Testing and Evaluation, 10th ed., edited by Kuhn, H. and Medlin, D. (ASM International, Materials Park, OH, 2000), pp. 232243.Google Scholar
58.Tabor, D., The Hardness of Metals (Oxford University Press, London, 1951).Google Scholar
59.King, R.B., Int. J. Solids Struct. 23, 1657 (1987).CrossRefGoogle Scholar
60.Vlassak, J.J. and Nix, W.D., J. Mech. Phys. Solids, 42, 1223 (1994).CrossRefGoogle Scholar
61.Hendrix, B.C., J. Mater. Res 10, 255 (1995).CrossRefGoogle Scholar
62.Loubet, J.L., Georges, J.M., Marchesini, O. and Meille, G., J. Tribology 106, 43 (1984).CrossRefGoogle Scholar
63.Joslin, D.L. and Oliver, W.C., J. Mater. Res. 5, 123 (1990).CrossRefGoogle Scholar
64.Stone, D.S., Yoder, K.B. and Sproul, W.D., J. Vac. Sci. Technol. A 9, 2543 (1991).CrossRefGoogle Scholar
65.Pethica, J.B. and Oliver, W.C., Phys. Scr. 19, 61 (1987).CrossRefGoogle Scholar
66.Pethica, J.B. and Oliver, W.C. in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J.C., Nix, W.D., Barnett, D.M., and Smith, D.A., (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 13.Google Scholar