Article contents
Material aspects of wide temperature range amplifier design in SiC bipolar technologies
Published online by Cambridge University Press: 26 September 2016
Abstract
Silicon carbide (SiC) is the main semiconductor alternative for low loss high voltage devices. The wide energy band gap also makes it suitable for extreme environment electronics, including very high temperatures. Operating integrated electronics at 500–600 °C poses several materials challenges. However, once electronics is available for these high temperatures, the added challenge is designing integrated circuits capable of operating in the entire range from room temperature to 500 °C. Circuit designers have to take into account parameter variations of resistors and transistors, and models are needed for several temperatures. A common circuit design technique to manage parameter variations between different transistors, without wide temperature variations, is to use negative feedback in amplifier circuits. In this paper we show that this design technique is also useful for adapting to temperature changes during operation. Two different amplifier designs in SiC are measured and simulated from room temperature up to 500 °C.
- Type
- Invited Feature Papers
- Information
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 2
- Cited by