Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T21:06:30.679Z Has data issue: false hasContentIssue false

Low-temperature synthesis and sintering of γ-Y2Si2O7

Published online by Cambridge University Press:  01 June 2006

Ziqi Sun
Affiliation:
High Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
Yanchun Zhou*
Affiliation:
High Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Meishuan Li
Affiliation:
High Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, a novel pressureless solid-liquid reaction method is presented for preparation of yttrium disilicate (γ-Y2Si2O7). Single-phase γ-Y2Si2O7 powder was synthesized by calcination of SiO2 and Y2O3 powders with the addition of LiYO2 at 1400 °C for 4 h. The addition of LiYO2 significantly decreased the synthesis temperature, shortened the calcination time, and enhanced the stability of γ-Y2Si2O7. The sintering of these powders in air and O2 was studied by means of thermal mechanical analyzer. It is shown that the γ-Y2Si2O7 sintered in oxygen had a faster densification rate and a higher density than that sintered in air. Furthermore, single-phase γ-Y2Si2O7 with a density of 4.0 g/cm3 (99% of the theoretical density) was obtained by pressureless sintering at 1400 °C for 2 h in oxygen. Microstructures of the sintered samples are studied by scanning electron microscope.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Levin, E.M., Robbins, C.R., McMurdie, H.F.: Phase Diagrams for Ceramists—1969 Supplement (The American Ceramic Society, Inc., Columbus, OH, 1969), Fig. 2388, p. 76.Google Scholar
2.Ching, W.Y., Ouyang, L.Z., Xu, Y.N.: Electronic and optical properties of Y2SiO5 and Y2Si2O7 with comparisons to α-SiO2 and Y2O3. Phys. Rev. B 67, 245108 (2003).CrossRefGoogle Scholar
3.Fukuda, K., Matrubara, H.: Thermal expansion of δ-yttrium disilicate. J. Am. Ceram. Soc. 87, 89 (2004).CrossRefGoogle Scholar
4.Peters, T.E.: Cathodoluminescent Lny (SiO2)x: Tb phosphors. J. Electrochem. Soc. 116, 985 (1969).CrossRefGoogle Scholar
5.de Mesquita, A.H. Gomes, Bril, A.: Preparation and cathodoluminescence of ceion-activated yttrium silicates and some isostructure. Mater. Res. Bull. 4, 643 (1969).CrossRefGoogle Scholar
6.Kepinski, L., Hreniak, D., Strek, W.: Microstructure and luminescence properties of nanocrystalline cerium silicates. J. Alloys Compd. 341, 1 (2002).CrossRefGoogle Scholar
7.Clarke, D.R., Thomas, G.: Microstructure of Y2O3 fluxed hot-pressed silicon nitride. J. Am. Ceram. Soc. 61, 114 (1978).CrossRefGoogle Scholar
8.Choi, H.J., Lee, J.G., Kim, Y.W.: High temperature strength and oxidation behavior of hot pressed silicon nitride–disilicate ceramics. J. Mater. Sci. 32, 1937 (1997).CrossRefGoogle Scholar
9.Lee, W.E., Drummond, C.H., Hilmas, G.E., Kumar, S.: Microstructural evolution in near-eutectic yttrium silicate compositions fabricated from a bulk melt and as an intergranular phase in silicon-nitride. J. Am. Ceram. Soc. 73, 3575 (1990).CrossRefGoogle Scholar
10.Hong, Z.L., Yoshida, H., Ikuhara, Y., Nishimura, T., Mitomo, M.: The effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate. J. Eur. Ceram. Soc. 22, 527 (2002).CrossRefGoogle Scholar
11.Feslche, J.: The crystal chemistry of rare-earth silicates. Struct. Bonding 13, 99 (1973).Google Scholar
12.Dinger, T.R., Rai, R.S., Purdy, G.R.: Crystallization behavior of a glass in the Y2O3-SiO2-AlN system. J. Am. Ceram. Soc. 71, 236 (1988).CrossRefGoogle Scholar
13.Christensen, A.N., Hazell, R.G., Hewat, A.W.: Synthesis crystal growth and structure investigations of rare earth disilicates and rare earth oxyapatites. Acta Chem. Scand. A 51, 37 (1997).CrossRefGoogle Scholar
14.Feslche, J.: Polymorphism and crystal data of the rare earth disilicates of type RE2Si2O7. J. Less-Common Met. 21, 1 (1970).Google Scholar
15.Ito, J., Johnson, H.: Synthesis and study of yttrialite. Am. Mineral. 53, 1940 (1968).Google Scholar
16.Becerro, A.I., Naranjo, M., Alba, M.D., Trillo, J.M.: Structure-directing effect of phyllosilicates on the synthesis of y-Y2Si2O7. Phase transitions in Y2Si2O7. J. Mater. Chem. 13, 1835 (2003).CrossRefGoogle Scholar
17.Diaz, M., Garcia-Cano, I., Mello-Castanho, S., Moya, J.S., Rodriguez, M.A.: Synthesis of nanocrystalline yttrium disilicate powder by sol-gel method. J. Non-Cryst. Solids 289, 151 (2001).CrossRefGoogle Scholar
18.Moya, J.S., Diaz, M., Serna, C.J., Mello-Castanho, S.: Formation of nanocrystalline yttrium disilicate by an oxalate gel method. J. Eur. Ceram. Soc. 18, 1381 (1998).CrossRefGoogle Scholar
19.Giesche, H., Matijević, E.: Preparation, characterization, and sinterability of well-defined silica/yttria powders. J. Mater. Res. 9, 436 (1994).CrossRefGoogle Scholar
20.Becerro, A.I., Naranjo, M., Perdigón, A.C., Trillo, J.M.: Hydrothermal chemistry of silicates: Low-temperature synthesis of y-yttrium disilicate. J. Am. Ceram. Soc. 86, 1592 (2003).CrossRefGoogle Scholar
21.Nekrasov, Ya.I., Kashirstseva, G.A.: Phase relations in system Y2O3-SiO2-H2O at 300-650 °C and PH2O = 1 kilomar. Dokl. Akad. Nauk SSSR 231, 698 (1976).Google Scholar
22.Diaz, M., Pecharromán, C., Monte, F. del, Iglesias, J.E., Moya, J.S., Yamagata, C., Mello-Castanho, S.: Synthesis, thermal evolution, and luminescence properties of yttrium disilicate host matrix. Chem. Mater. 17, 1774 (2005).CrossRefGoogle Scholar
23.Kumar, S., Drummond, C.H.: Crystallization of various compositions in the Y2O3-SiO2 system. J. Mater. Res. 7, 997 (1992).CrossRefGoogle Scholar
24.Trusty, P.A., Boccaccini, A.R., Butler, E.G., Ponton, C.B.: Novel techniques for manufacturing woven fiber-reinforced ceramic-matrix composites. 1. Perform fabrication. Mater. Manuf. Process 10, 1215 (1995).CrossRefGoogle Scholar
25.Matovic, B., Rixecker, G., Aldinger, F.: Densification of Si3N4 with LiYO2 additive. J. Am. Ceram. Soc. 87, 546 (2004).CrossRefGoogle Scholar
26.Wang, J.Y., and Zhou, Y.C.: (unpublished).Google Scholar
27.Bressiani, J.C., Izhevskyi, V., Bressiani, H.A.: Development of the microstructure of the silicon nitride based ceramics. Mater. Res. 2, 165 (1999).CrossRefGoogle Scholar
28.Parmentier, J., Liddell, K., Thompson, D.P., Lemercier, H., Schneider, N., Hampshire, S., Bodart, P.R., Harris, R.K.: Influence of iron on the synthesis and stability of yttrium silicate apatite. Solid State Sci. 3, 495 (2001).CrossRefGoogle Scholar
29.Zou, Y., Petric, A.: Thermodynamic stability of the lithium zirconates and lithium yttrium. J. Phys. Chem. Solids 55, 493 (1994).CrossRefGoogle Scholar
30.Kang, S., Lee, J., Kim, J., Lee, H., Cho, S.: Effects of sintering atmosphere on densification and dielectric characteristics in Sr0.5Ba0.5Nb2O6. J. Eur. Ceram. Soc. 24, 1031 (2004).CrossRefGoogle Scholar
31.Ziegler, G., Heinrich, J., Wötting, G.: Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J. Mater. Sci. 22, 3041 (1987).CrossRefGoogle Scholar
32.Readey, D.W., Quadir, T., Lee, J.: Vapor transport and sintering of ceramics. Mat. Sci. Res. 16, 115 (1984).CrossRefGoogle Scholar