Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T11:07:04.889Z Has data issue: false hasContentIssue false

Low-temperature synthesis and characterization of PVP-capped FeAu nanoparticles

Published online by Cambridge University Press:  23 June 2011

HongLing Liu
Affiliation:
Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
Peng Hou
Affiliation:
Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
JunHua Wu*
Affiliation:
Pioneer Research Center for Biomedical Nanocrystals, Korea University, Seoul 136-713, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report the low-temperature synthesis and characterization of polyvinylpyrrolidone (PVP)-capped FeAu magneto-plasmonic multifunctional nanoparticles by a one-step nanoemulsion process. The Fourier transform infrared spectroscopy study proves the PVP coating on the surface of the resultant FeAu nanoparticles, whereas the structural, magnetic, and optical analysis illustrates the fusion of iron and gold into one single nanostructure showing the nanoparticle shape and a tight size distribution with an average size of 11.3 nm, followed by the growth habit compared to other relevant nanoparticles. Moreover, the PVP-capped FeAu nanoparticles manifest soft ferromagnetic behavior with a small coercivity of ∼40 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by modified bi-phase Langevin equations, which were reasonably interpreted with the binary particle size distribution. The nanoparticles reveal a well-defined surface plasmon resonance band at ∼546 nm and a visual demonstration shows the magnetic separability of all nanoparticles for potential magnetic and/or optical manipulation.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J-M., and Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).CrossRefGoogle ScholarPubMed
2.Ross, C.: Patterned magnetic recording media. Annu. Rev. Mater. Res. 31, 203 (2001).CrossRefGoogle Scholar
3.Liu, H.L., Sonn, C.H., Wu, J.H., Lee, K.M., and Kim, Y.K.: Synthesis of streptavidin-FITC-conjugated core–shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 29, 4003 (2008).CrossRefGoogle ScholarPubMed
4.Li, P., Miser, D.E., Rabiei, S., Yadav, R.T., and Hajaligol, M.R.: The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B 43, 151 (2003).CrossRefGoogle Scholar
5.Kim, S., Lim, J., Lee, S., Heo, C., and Yang, S.: Biofunctional colloids and their assemblies. Soft Matter. 6, 1092 (2010).CrossRefGoogle Scholar
6.Hockfield, S.: The next innovation revolution. Science 323, 1147 (2009).CrossRefGoogle ScholarPubMed
7.Ji, Y., Yang, S., Guo, S., Song, X., Ding, B., and Yang, Z.: Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution. Colloids Surf. A 372, 204 (2010).CrossRefGoogle Scholar
8.Kharisov, B.I., Kharissova, O.V., Yacaman, M.J., and Mendez, U.O.: State of the art of the bi- and trimetallic nanoparticles on the basis of gold and iron. Recent Pat. Nanotechnol. 3, 81 (2009).CrossRefGoogle ScholarPubMed
9.Roca, A.G., Costo, R., Rebolledo, A.F., Veintemillas-Verdaguer, S., Tartaj, P., Gonzalez-Carreno, T., Morales, M.P., and Serna, C.J.: Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 42, 224002 (1–11) (2009).CrossRefGoogle Scholar
10.Glockl, G., Hergt, R., Zeisberger, M., Dutz, S., Nagel, S., and Weitschies, W.: The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter. 18, S2935 (2006).CrossRefGoogle Scholar
11.Wakisaka, M., Suzuki, H., Mitsui, S., Uchida, H., and Watanabe, M.: Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC−XPS. J. Phys. Chem. C 112, 2750 (2008).CrossRefGoogle Scholar
12.Wang, Y.W., Zhang, L.D., Meng, G.W., Peng, X.S., Jin, Y.X., and Zhang, J.: Fabrication of ordered ferromagnetic-nonmagnetic alloy nanowire arrays and their magnetic property dependence on annealing temperature. J. Phys. Chem. B 106, 2502 (2002).CrossRefGoogle Scholar
13.Li, H., Liew, K.M., Zhang, X.Q., Zhang, J.X., Liu, X.F., and Bian, X.F.: Electron-conduction properties of Fe-Al alloy nanowires. J. Phys. Chem. B 112, 15588 (2008).CrossRefGoogle ScholarPubMed
14.Daniel, M-C. and Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2004).CrossRefGoogle Scholar
15.Link, S., Mohamed, M.B., and El-Sayed, M.A.: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073 (1999).CrossRefGoogle Scholar
16.Lu, Y., Shi, C., Hu, M-J., Xu, Y-J., Yu, L., Wen, L-P., Zhao, Y., Xu, W-P., and Yu, S-H.: Magnetic alloy nanorings loaded with gold nanoparticles: Synthesis and applications as multimodal imaging contrast agents. Adv. Funct. Mater. 20, 3701 (2010).CrossRefGoogle Scholar
17.Scaffardi, L.B., Pellegri, N., de Sanctis, O., and Tocho, J.O.: Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology 16, 158 (2005).CrossRefGoogle Scholar
18.Hainfeld, J.F. and Powell, R.D.: New frontiers in gold labeling. J. Histochem. Cytochem. 48, 471 (2000).CrossRefGoogle ScholarPubMed
19.Lee, Y.W., Kim, N.H., Lee, K.Y., Kwon, K., Kim, M., and Han, S.W.: Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles. J. Phys. Chem. C 112, 6717 (2008).CrossRefGoogle Scholar
20.Zhang, X., Tsuji, M., Lim, S., Miyamae, N., Nishio, M., Hikino, S., and Umezu, M.: Synthesis and growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles. Langmuir 23, 6372 (2007).CrossRefGoogle ScholarPubMed
21.Molenbroek, A.M. and Clausen, J.K.N.B.S.: Structure and reactivity of Ni-Au nanoparticle catalysts. J. Phys. Chem. B 105, 5450 (2001).CrossRefGoogle Scholar
22.Lu, D.L., Domen, K., and Tanaka, K.I.: Electrodeposited Au-Fe, Au-Ni, and Au-Co alloy nanoparticles from aqueous electrolytes. Langmuir 18, 3226 (2002).CrossRefGoogle Scholar
23.Xu, J.B., Zhao, T.S., Liang, Z.X., and Zhu, L.D.: Facile preparation of AuPt alloy nanoparticles from organometallic complex precursor. Chem. Mater. 20, 1688 (2008).CrossRefGoogle Scholar
24.Okamoto, H., Massalski, T.B., Swartzendruber, L.J., and Beck, P.A.: The Au-Fe (gold-iron) system. Bull. Alloy Phase Diagrams 5, 592 (1984).CrossRefGoogle Scholar
25.Massalski, T.B.: Binary Alloys Phase Diagrams, vol. 1, 2nd ed. (ASM International, Materials Park, OH, 1990) pp. 367369.Google Scholar
26.Chiang, I.C. and Chen, D.H.: Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv. Funct. Mater. 17, 1311 (2007).CrossRefGoogle Scholar
27.Dahal, N., Jasinski, V.C.J., and Leppert, V.J.: Synthesis of water-soluble iron-gold alloy nanoparticles. Chem. Mater. 20, 6389 (2008).CrossRefGoogle Scholar
28.Liu, H.L., Wu, J.H., Min, J.H., and Kim, Y.K.: Synthesis of monosized magnetic-optical AuFe alloy nanoparticles. J. Appl. Phys. 103, 07D529 (1–3) (2008).CrossRefGoogle Scholar
29.Albanese, G., Deriu, A., Moya, J., Angeli, E., Bisero, D., Da Re, A., Ronconi, F., Spizzo, F., Vavassori, P., Baricco, M., and Bosco, E.: Mossbauer investigation of Au/Fe alloys with giant magnetoresistence properties. J. Magn. Magn. Mater. 272276, 1545 (2004).CrossRefGoogle Scholar
30.Ban, Z.H., Barnakov, Y.A., Golub, V.O., and O’Connor, C.J.: The synthesis of core-shell iron@gold nanoparticles and their characterization. J. Mater. Chem. 15, 4660 (2005).CrossRefGoogle Scholar
31.Sato, K., Bian, B., and Hirotsu, Y.: L10 type ordered phase formation in Fe–Au nanoparticles. Jpn. J. Appl. Phys. 41(Part 2), L1 (2002).CrossRefGoogle Scholar
32.Fischer, F. and Bauer, S.: Polyvinylpyrrolidon: A versatile substance in chemistry. Chemistry in our Time. 43, 376 (2009).Google Scholar
33.Liu, H.L., Ko, S.P., Wu, J.H., Jung, M.H., Min, J.H., Lee, J.H., An, B.H., and Kim, Y.K.: One-pot polyol synthesis of monosize PVP-coated sub-5nm Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 310, e815 (2007).CrossRefGoogle Scholar
34.Huang, H., Xie, Q., Kang, M., Zhang, B., Zhang, H., Chen, J., Zhai, C., Yang, D., Jiang, B., and Wu, Y.: Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging. Nanotechnology 20, 365101 (1–9) (2009).CrossRefGoogle ScholarPubMed
35.Shao, H., Huang, Y., Lee, H.S., Suh, Y.J., and Kim, C.O.: Effect of PVP on the morphology of cobalt nanoparticles prepared by thermal decomposition of cobalt acetate. Curr. Appl. Phys. 6, e195 (2006).CrossRefGoogle Scholar
36.Pardinas-Blanco, I., Hoppe, C.E., Pineiro-Redondo, Y., Lopez-Quintela, M.A., and Rivas, J.: Formation of gold branched plates in diluted solutions of poly(vinylpyrrolidone) and their use for the fabrication of near-infrared-absorbing films and coatings. Langmuir 24, 983 (2008).CrossRefGoogle ScholarPubMed
37.Liu, H.L., Hou, P., Zhang, W.X., and Wu, J.H.: Synthesis of monosized core–shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloids Surf. A 356, 21 (2010).CrossRefGoogle Scholar
38.Wu, J.H., Min, J.H., Liu, H.L., Cho, J.U., and Kim, Y.K.: Giant diamagnetism in AuFe nanoparticles. IEEE Trans. Magn. 45, 2442 (2009).Google Scholar
39.Sahiner, N., Pekel, N., and Guven, O.: Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks. React. Funct. Polym. 39, 139 (1999).CrossRefGoogle Scholar
40.Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Complexes (Wiley, New York, 1978).Google Scholar
41.Cullity, B.D. and Stock, S.R.: Elements of X-ray Diffraction (Prentice Hall, Upper Saddle River, 2001).Google Scholar
42.Crespo, P., Litran, R., Rojas, T.C., Multigner, M., de la Fuente, J.M., Sanchez-Lopez, J.C., Garcia, M.A., Hernando, A., Penades, S., and Fernandez, A.: Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett. 93, 087204 (1–4) (2004).CrossRefGoogle ScholarPubMed
43.Petit, C. and Pilen, M.P.: Physical properties of self-assembled nanosized cobalt particles. Appl. Surf. Sci. 162/163, 519 (2000).CrossRefGoogle Scholar
44.Wu, J.H.: Design and structural characterization of perpendicular magnetic superlattices. Nanotechnology 13, 720 (2002).Google Scholar
45.Willets, K.A. and Duyne, R.P.V.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).CrossRefGoogle ScholarPubMed
46.Jeong, J., Min, J.H., Song, A.-Y., Lee, J.S., Ju, J.-S., Wu, J.H., and Kim, Y.K.: Nonaqueous synthesis and magnetic properties of ZnFe2O4 nanocrystals with narrow size distributions. J. Appl. Phys. 109, 07B511(1–3) (2011).CrossRefGoogle Scholar