Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T13:15:40.875Z Has data issue: false hasContentIssue false

Low-temperature preparation and structural characterization of Pr-doped ceria solid solutions

Published online by Cambridge University Press:  31 January 2011

E. López-Navarrete
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-UNSE), Americo Vespucio s/n, Isla de La Cartuja, 41092 Sevilla, Spain
A. Caballero
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-UNSE), Americo Vespucio s/n, Isla de La Cartuja, 41092 Sevilla, Spain
A. R. González-Elipe
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-UNSE), Americo Vespucio s/n, Isla de La Cartuja, 41092 Sevilla, Spain
M. Ocaña
Affiliation:
Instituto de Ciencia de Materiales de Sevilla (CSIC-UNSE), Americo Vespucio s/n, Isla de La Cartuja, 41092 Sevilla, Spain
Get access

Abstract

We report a method for preparing Pr-doped ceria by pyrolysis at 600 °C of aerosols consisting of aqueous solutions of Ce(III) nitrate and Pr(III) chloride. This procedure involves an important decrease of the temperature of solid solution formation (several hundred degrees) when compared with the ceramic and other previously reported methods, and does not require the addition of fluxes. The prepared samples and their products after thermal treatment were characterized in terms of particle shape and size distribution, composition, and crystalline structure. The color properties of these solid solutions were also evaluated as a function of the heating temperature and composition; the optimum red pigment was obtained for samples with a Pr/Ce mole ratio = 0.063 heated for 3 h at 600 °C. The oxidation state of the Pr cations and their distribution in the CeO2 matrix were investigated by x-ray absorption near-edge spectroscopy and x-ray photoelectron spectroscopy. A mixture of trivalent and tetravalent Pr was detected in all studies samples. The Pr(IV)/Pr(III) ratio increased as the Pr content or the heating temperature increased. These Pr(III) cations were found to be mainly located in the particles' outer layers, in which an enrichment of Pr was detected for all samples heated at 600 °C. The further calcination of the pigments at 1200 °C gave rise to a certain diffusion of the Pr cations toward the particle core, which was more significant for the sample with the highest Pr content (Pr/Ce mole ratio 4 0.091).

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Olazcuaga, R., Polles, G. Le, Kira, A. El, Flem, G. Le, and Maestro, P., J. Solid State Chem. 71, 570 (1987).CrossRefGoogle Scholar
2Šulcové, P., Trojan, M., and Šolc, Z., Dyes Pigments 37, 65 (1998).CrossRefGoogle Scholar
3Bondioli, F., Corradi, A. Bonamartini, Manfredini, T., Leonelli, C., and Bertoncello, R., Chem. Mater. 12, 324 (2000).CrossRefGoogle Scholar
4Llusar, M., Badenes, J.A., Calbo, J., Tena, M.A., and Monrós, G., Am. Ceram. Soc. Bull. 78(7), 63 (1999).Google Scholar
5Olazcuaga, R., Kira, A. El, Flem, G. Le, and Maestro, P., C.R. Acad. Sc. Paris II 303, 361 (1986).Google Scholar
6Messing, G.L., Zhang, S.C., and Jayanthi, G.V., J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
7Kanzaki, S. and Tabata, H., J. Am. Ceram. Soc. 68, C6 (1985).CrossRefGoogle Scholar
8Gonzalez-Carreño, T., Tartaj, P., Sanz, J., Serna, C.J., and Ocaña, M., Adv. Sci. Technol. 3B, 1211 (1995).Google Scholar
9Tartaj, P., González-Carreño, T., Serna, C.J., and Ocaña, M., J. Solid State Chem. 128, 102 (1997).CrossRefGoogle Scholar
10López-Navarrete, E. and Ocaña, M., J. Eur. Ceram. Soc. 22, 353 (2002).CrossRefGoogle Scholar
11 JCPDF file No 34 394.Google Scholar
12 C.I.E. Pub. No. 15 (E1-1.31) 1971, Bureau Central de la Commission Intenationale de L'eclairage, Paris, France (1978).Google Scholar
13 JCPDF file No 6 329.Google Scholar
14Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986), p. 476.Google Scholar
15McDevitt, N.T. and Baun, W.L., Spectrochim. Acta. 20, 799 (1964).CrossRefGoogle Scholar
16McBride, J.R., Hass, K.C., Poindexter, B.D., and Weber, W.H., J. Appl. Phys. 76, 2435 (1994).CrossRefGoogle Scholar
17Bianconi, A., Marcelli, A., Dexpert, H., Karnatak, R., Kotani, A., Jo, T., and Petiau, J., Phys. Rev. B 35, 806 (1987).CrossRefGoogle Scholar
18Soldatov, A.V., Ivanchenko, T.S., Longa, S. Della, Kotani, A., Iwamoto, Y., and Bianconi, A., Phys. Rev. B 50, 5074 (1994).CrossRefGoogle Scholar
19Capehart, T.W., Mishra, R.K., and Herbst, J.F., J. Appl. Phys. 72, 676 (1992).CrossRefGoogle Scholar
20Ocaña, M., Caballero, A., González-Elipe, A.R., Tartaj, P., and Serna, C.J., J. Solid State Chem. 139, 412 (1998).CrossRefGoogle Scholar
21Alleno, E., Godart, C., Fisher, B., Genossar, J., Patlagan, L., and Reisner, G.M., Physica B 259–261, 530 (1999).CrossRefGoogle Scholar
22Handbook of Chemistry and Physics, 72nd ed., edited by Lide, David R. (CRC Press, Boston, MA, 19911992), p. 812.Google Scholar
23Sinev, M. Yu., Graham, G.W., Haack, L.P., and Shelef, M., J. Mater. Res. 11, 1960 (1996).CrossRefGoogle Scholar