Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T20:51:45.379Z Has data issue: false hasContentIssue false

Low-temperature Crystallization of SrBi2Ta2O9 Thin Filmswith Bi2O3 Interfacial Layers by Liquid-delivery Metalorganicchemical Vapor Deposition

Published online by Cambridge University Press:  31 January 2011

Woong-Chul Shin
Affiliation:
Department of Materials Engineering, Chungnam National University, Daeduk Science Town,Taejon, 305–764, Korea
Kyu-Jeong Choi
Affiliation:
Department of Materials Engineering, Chungnam National University, Daeduk Science Town,Taejon, 305–764, Korea
Soon-Gil Yoon
Affiliation:
Department of Materials Engineering, Chungnam National University, Daeduk Science Town,Taejon, 305–764, Korea
Get access

Abstract

Ferroelectric SrBi2Ta2O9 (SBT) thin films and Bi2O3 interfacial layers were depositedonto the Pt/Ti/SiO2/Si substrates via liquid-delivery metalorganic chemical vapordeposition. The SBT films with a 5-nm-thick Bi2O3 interfacial layer were well crystallized without c-axis orientation, even at deposition temperature of 540 °C and showed a stronger (115) orientation than those without a Bi2O3 layer with increasing annealing temperature. The remanent polarizations of SBT films with Bi2O3 interfacial layer were significantly improved in comparison with those without Bi2O3 layer. The remanent polarization (2Pr) and coercive field (Ec) of SBT films without and with aBi2O3 interfacial layer annealed at 750 °C were 12 and 21 μC/cm2 and 60 and38 kV/cm, respectively, at an applied voltage of 5 V.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, C.A. Paz de, McMillan, L.D., Cuchiaro, J.D., and Scott, M.C., International Patent Publication No. WO 93/12542 (1993).Google Scholar
Scott, J.F., Ross, F.M., Araujo, C.A. Paz de, Scott, M.C., and Huffman, M., Mater. Res. Bull. 20, 33 (1996).CrossRefGoogle Scholar
Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
Dat, R., Lee, J.K., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 67, 572 (1995).CrossRefGoogle Scholar
Park, S.S., Yang, C.H., Ahn, J.H., Kim, H.G., and Yoon, S.G., J. Electrochem. Soc. 144, 2855 (1997).CrossRefGoogle Scholar
Li, T., Zhu, Y., Desu, S.B., Peng, C.H., and Nagata, M., Appl. Phys. Lett. 68, 616 (1996).CrossRefGoogle Scholar
Zhu, Y., Desu, S.B., Li, T., Ramanathan, S., and Nagata, M., J. Mater. Res. 12, 783 (1997).CrossRefGoogle Scholar
Nukaga, N., Mitsuya, M., and Funakubo, H., Jpn. J. Appl. Phys. 39, 5496 (2000).CrossRefGoogle Scholar
Kim, J.S., Yang, C.H., Choi, W.Y., Kim, H.G., and Yoon, S.G., Appl. Surf. Sci. 140, 150 (1999).CrossRefGoogle Scholar
Gutleben, C.D., in Ferroelectric Thin Films V, edited by Desu, S.B., Ramesh, R., Tuttle, B.A., and Jones, R.E. (Mater. Res. Soc. Symp. Proc. 433, Pittsburgh, PA, 1996), p. 109.Google Scholar
Atsuki, T., Soyama, N., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).CrossRefGoogle Scholar
Seong, N.J., Yang, C.H., Shin, W.C., and Yoon, S.G., Appl. Phys. Lett. 72, 1374 (1998).CrossRefGoogle Scholar