Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T13:13:39.651Z Has data issue: false hasContentIssue false

Low-cost manufacturing process for nanostructured metals and alloys

Published online by Cambridge University Press:  31 January 2011

Travis L. Brown
Affiliation:
Schools of Engineering, Purdue University, West Lafayette, Indiana 47907–1287
Srinivasan Swaminathan
Affiliation:
Schools of Engineering, Purdue University, West Lafayette, Indiana 47907–1287
Srinivasan Chandrasekar
Affiliation:
Schools of Engineering, Purdue University, West Lafayette, Indiana 47907–1287
W. Dale Compton
Affiliation:
Schools of Engineering, Purdue University, West Lafayette, Indiana 47907–1287
Alexander H. King
Affiliation:
Schools of Engineering, Purdue University, West Lafayette, Indiana 47907–1287
Kevin P. Trumble
Affiliation:
Schools of Engineering, Purdue University, West Lafayette, Indiana 47907–1287
Get access

Abstract

In spite of their interesting properties, nanostructured materials have found limited uses because of the cost of preparation and the limited range of materials that can be synthesized. It has been shown that most of these limitations can be overcome by subjecting a material to large-scale deformation, as occurs during common machining operations. The chips produced during lathe machining of a variety of pure metals, steels, and other alloys are shown to be nanostructured with grain (crystal) sizes between 100 and 800 nm. The hardness of the chips is found to be significantly greater than that of the bulk material.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Prog. Mater. Sci. 33, 1 (1989).CrossRefGoogle Scholar
2.Siegel, R.W., Sci. Am. 275, 74 (1996).CrossRefGoogle Scholar
3.Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
4.Birringer, R., Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
5.Lu, L., Sui, M.L., and Lu, K., Science 287, 1463 (2000).CrossRefGoogle Scholar
6.McFadden, X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P., Mukerjee, A.K., Nature 398, 684 (1999).CrossRefGoogle Scholar
7.Breisen, H., Fuhrmann, A., and Pratsinis, S.E., in Nanostructured Powders and Their Industrial Application, edited by Beaucage, G., Mark, J.E., Burns, G.T., and Hua, D-W. (Mater. Res. Soc. Symp. Proc. 520, Warrendale, PA, 1998), p. 3.Google Scholar
8.Fecht, H.J., Hellstern, E., Fu, Z., and Johnson, W.L., Metall. Trans. A 21, 2333 (1990).CrossRefGoogle Scholar
9.Langford, G. and Cohen, M., Trans. Am. Soc. Met. 62, 623 (1969).Google Scholar
10.Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E., and Kopylov, V., Russ. Metall. 1, 99 (1981).Google Scholar
11.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
12.Humphreys, F.J., Prangnell, P.B., Bowen, J.R., Gholinia, A., Harris, C., Sevillano, J. Gil, Garcia-Rosales, C., and Flaquer-Fuster, J., Philos. Trans. R. Soc. London A 357, 1663 (1999).CrossRefGoogle Scholar
13.Merchant, M.E., J. Appl. Phys. 16, 267 and 318 (1945).CrossRefGoogle Scholar
14.Shaw, M.C., Metal Cutting Principles, (Clarendon, Oxford, U.K., 1984), p. 32.Google Scholar
15.Backofen, W.A., Deformation Processing (Addison Wesley, Reading, MA, 1972).Google Scholar
16.Valiev, R.Z., Ivanisenko, Yu.V., Rauch, E.F., and Baudelet, B., Acta Mater. 44, 4705 (1996).CrossRefGoogle Scholar
17.Agnew, S.R. and Weertman, J.R., Mater. Sci. Eng. A 244, 145 (1998).CrossRefGoogle Scholar
18.Ferrasse, S., Segal, V.M., Hartwig, K.T., and Gorforth, R.E., Metall. Mater. Trans. A 28, 1047 (1997).CrossRefGoogle Scholar
19.Kelly, A. and Mac, N.H.Millan, Strong Solids (Clarendon, Oxford, U.K., 1986), pp. 222 and 373.Google Scholar
20.Baumann, G., Zhong, Y., and Fecht, H.J., Nanostruct. Mater. 7, 237 (1996).CrossRefGoogle Scholar
21.Lojkowski, W., Djahanbakhsh, M., Burkle, G., Gierlotka, S., Zielinski, W., and Fecht, H.J., Mater. Sci. Eng. A 303, 197 (2001).CrossRefGoogle Scholar
22.Akcan, N.S., Shah, S., Moylan, S.P., Chhabra, P.N., Chandrasekar, S., and Yang, H.T.Y., Metall. and Mater. Trans. A 33, 1245 (2002).CrossRefGoogle Scholar
23.Rigney, D.A. and Hirth, J.P., Wear 53, 345 (1979).CrossRefGoogle Scholar
24.Hughes, D.A. and Hansen, N., Phys. Rev. Lett. 87, 135503 (2001).CrossRefGoogle Scholar
25.Chandrasekar, S., Compton, W.D., Farris, T.N., and Trumble, K.P., U.S. Patent Application filed Oct. 27, 2001, on behalf of Purdue University.Google Scholar