Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T13:01:49.134Z Has data issue: false hasContentIssue false

Low temperature synthesis of YBa2Cu3O7−x thin films

Published online by Cambridge University Press:  31 January 2011

Michihito Muroi
Affiliation:
Fuji Electric Corporate Research and Development Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa, Japan 240-01
Toshiyuki Matsui
Affiliation:
Fuji Electric Corporate Research and Development Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa, Japan 240-01
Yuji Koinuma
Affiliation:
Fuji Electric Corporate Research and Development Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa, Japan 240-01
Yuko Okamura
Affiliation:
Fuji Electric Corporate Research and Development Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa, Japan 240-01
Koichi Tsuda
Affiliation:
Fuji Electric Corporate Research and Development Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa, Japan 240-01
Megumi Nagano
Affiliation:
Fuji Electric Corporate Research and Development Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa, Japan 240-01
Kazuo Mukae
Affiliation:
Fuji Electric Corporate Research and Development Ltd., 2-2-1 Nagasaka, Yokosuka, Kanagawa, Japan 240-01
Get access

Abstract

Thin films of YBa2Cu3O7−x (YBCO) have been prepared on MgO substrates at 650 °C by rf-planar magnetron sputtering using a single oxide target. Depositions at two different substrate positions were examined: (A) above the inner boundary of the erosion area of a target (position A), (B) right above the center of a target (position B). The films deposited at position A suffered a serious deficiency in the contents of Ba and Cu, especially in the low gas pressure region due to the bombardment of the growing films by high-energy particles. Though we could obtain almost stoichiometric films by raising the gas pressure to 15 Pa to reduce the bombardment, high temperature annealing at 950 °C was required to improve their crystallinity and to achieve high critical temperatures (Tc). On the other hand, those deposited at position B were more excellent in crystallinity than those at position A and showed high Tc above 80 K without any annealing. Critical current density C/r) at 77 K was improved from about 103 A/cm2 to about 104 A/cm2 by annealing at low temperature of 500 °C. It is concluded that the deposition with reduced bombardment by high-energy particles enables the fabrication of high Tc YBCO films without a high temperature process.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J. G. and Müller, K. A., Z. Phys. B64, 188 (1986).Google Scholar
2Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z.J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
3Hor, P. H., Gao, L., Meng, R. L., Huang, Z. L., Wang, Y. Q., Forster, K., Vassiliou, J., Chu, C. W., Wu, M. K., Ashburn, J. R., and Torng, C.J., Phys. Rev. Lett. 58, 911 (1987).Google Scholar
4Suzuki, M. and Murakami, T., Jpn. J. Appl. Phys. 26, L524 (1987).CrossRefGoogle Scholar
5Liou, S.H., Hong, M., Kwo, J., Davinson, B.A., Chen, H.S., Nakahara, S., Boone, T., and Felder, R. J., Appl. Phys. Lett. 52 (20), 1735 (1988).Google Scholar
6Muroi, M., Matsui, T., Koinuma, Y., Tsuda, K., Nagano, M., and Mukae, K., Proc. of the Applied Superconductivity Conference '88 (to be published).Google Scholar
7Muroi, M., Matsui, T., Koinuma, Y., Tsuda, K., Nagano, M., and Mukae, K., Proc. of the 1st Int. Symp. of Superconductivity (ISS'88), 545.Google Scholar
8Mankiewich, P.M., Scofield, J. H., Scocpol, W.J., Howard, R. E., Dayem, A.H., and Good, E., Appl. Phys. Lett. 51 (21), 1753 (1987).Google Scholar
9Terashima, T., Iijima, K., Yamamoto, K., Bando, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L91 (1988).CrossRefGoogle Scholar
10Webb, C., Weng, S.L., Eckstein, J. N., Missert, N., Char, K., Schlom, D.G., Hellman, E. S., Beasley, M. R., Kapinulnic, A., and Harris, J. S., Appl. Phys. Lett. 51, 1191 (1987).Google Scholar
11Wu, X.D., Dijkkamp, D., Ogale, S.B., Inam, A., Chase, E.W., Miceli, P. F., Chang, C. C., Tarascon, J. M., and Venkatesan, T., Appl. Phys. Lett. 51, 862 (1987).Google Scholar
12Wu, X. D., Inam, A., Venkatesan, T., Chang, C. C., Chase, E. W., Barboux, P., Tarascon, J.M., and Wilkins, B., Appl. Phys. Lett. 52 (9), 754 (1988).Google Scholar
13Shintani, Y., Nakanishi, K., Takawaki, T., and Toda, O., Jpn. J. Appl. Phys. 14 (12), 1875 (1975).CrossRefGoogle Scholar
14Tominaga, K., Ueshima, N., Shintani, Y., and Toda, O., Jpn. J. Appl. Phys. 20 (3), 519 (1981).Google Scholar
15Tominaga, K., Iwamura, S., Shintani, Y., and Toda, O., Jpn. J. Appl. Phys. 21 (5), 688 (1982).Google Scholar
16Terada, N., Ihara, H., Jo, M., Hirabayashi, M., Kimura, Y., Matsutani, K., Hirata, K., Ohno, E., Sugise, R., and Kawashima, F., Jpn. J. Appl. Phys. 27 (4), L639 (1988).CrossRefGoogle Scholar
17Matsui, Y., Takayama-Muromachi, E., and Kato, K., Jpn. J. Appl. Phys. 27 (3), L350 (1988).Google Scholar