Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T02:36:13.378Z Has data issue: false hasContentIssue false

Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling

Published online by Cambridge University Press:  12 November 2014

Dong Jin Woo
Affiliation:
Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
Joseph P. Hooper
Affiliation:
Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
Sebastian Osswald*
Affiliation:
Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
Brent A. Bottolfson
Affiliation:
Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, California 93943, USA
Luke N. Brewer
Affiliation:
Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, California 93943, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Carbon nanotube (CNT)-reinforced aluminum composite powders were synthesized by cryogenic milling. The effects of different milling parameters and CNT contents on the structural characteristics and mechanical properties of the resulting composite powders were studied. Detailed information on powder morphology and the dispersion and structural integrity of the CNTs is crucial for many powder consolidation methods, particularly cold spray, which is increasingly utilized to fabricate metal-based nanocomposites. While all of the produced composite powders exhibited particle sizes suitable for spray applications, it was found that with increasing CNT content, the average particle size decreased and the size distribution became narrower. The dispersion of CNTs improved with milling time and helped to maintain a small Al grain size during cryogenic milling. Although extensive milling allowed for substantial grain size reduction, the process caused notable CNT degradation, leading to a deterioration of the mechanical properties of the resulting composite.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suryanarayana, C.: Non-Equilibrium Processing of Materials (Elsevier, 1999).Google Scholar
Baker, A.A.A., Dutton, S., Kelly, D., and Kelly, D.W.: Composite Materials for Aircraft Structures (AIAA, New York, NY, 2004).Google Scholar
Ramasamy, A., Hill, A-M., Hepper, A., Bull, A., and Clasper, J.: Blast mines: Physics, injury mechanisms and vehicle protection. J. R. Army Med. Corps 155(4), 258 (2009).Google Scholar
Salvetat, J.P., Bonard, J.M., Thomson, N., Kulik, A., Forro, L., Benoit, W., and Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A: Mater. Sci. Process. 69(3), 255 (1999).Google Scholar
Dai, H.: Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35(12), 1035 (2002).Google Scholar
Hong, W.K., Lee, C., Nepal, D., Geckeler, K.E., Shin, K., and Lee, T.: Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation. Nanotechnology 17(22), 5675 (2006).Google Scholar
Treacy, M., Ebbesen, T., and Gibson, J.: Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).Google Scholar
Wong, E.W., Sheehan, P.E., and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971 (1997).CrossRefGoogle Scholar
Bakshi, S.R., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites‐a review. Int. Mater. Rev. 55(1), 41 (2010).Google Scholar
Ajayan, P.: Nanotubes from carbon. Chem. Rev. 99(39), 1787 (1999).Google Scholar
Kuzumaki, T., Miyazawa, K., Ichinose, H., and Ito, K.: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13(9), 2445 (1998).Google Scholar
Esawi, A. and Morsi, K.: Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites, Part A 38(2), 646 (2007).Google Scholar
Wang, L., Choi, H., Myoung, J-M., and Lee, W.: Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon 47(15), 3427 (2009).Google Scholar
Sridhar, I. and Narayanan, K.R.: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44(7), 1750 (2009).Google Scholar
Yamamoto, T., Miyauchi, Y., Motoyanagi, J., Fukushima, T., Aida, T., Kato, M., and Maruyama, S.: Improved bath sonication method for dispersion of individual single-walled carbon nanotubes using new triphenylene-based surfactant. Jpn. J. Appl. Phys 47(4), 2000 (2008).Google Scholar
Lee, J. and Rhee, K.: Silane treatment of carbon nanotubes and its effect on the tribological behavior of carbon nanotube/epoxy nanocomposites. J. Nanosci. Nanotechnol. 9(12), 6948 (2009).Google Scholar
Chen, Y., Conway, M., and Fitzgerald, J.: Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Appl. Phys. A: Mater. Sci. Process. 76(4), 633 (2003).Google Scholar
Garosshen, T. and McCarthy, G.: Low temperature carbide precipitation in a nickel base superalloy. Metall. Trans. A 16(7), 1213 (1985).Google Scholar
Welch, A.J.E.: The reaction of crystal lattice discontinuities to mineral dressing. In Developments in Mineral Dressing (IMM, London, UK, 1953); p. 387.Google Scholar
Pierard, N., Fonseca, A., Colomer, J.F., Bossuot, C., Benoit, J.M., Van Tendeloo, G., Pirard, J.P., and Nagy, J.: Ball milling effect on the structure of single-wall carbon nanotubes. Carbon 42(8), 1691 (2004).Google Scholar
Kukovecz, Á., Kanyó, T., Kónya, Z., and Kiricsi, I.: Long-time low-impact ball milling of multi-wall carbon nanotubes. Carbon 43(5), 994 (2005).Google Scholar
Poirier, D., Gauvin, R., and Drew, R.A.: Structural characterization of a mechanically milled carbon nanotube/aluminum mixture. Composites, Part A 40(9), 1482 (2009).CrossRefGoogle Scholar
Esawi, A.M.K., Morsi, K., Sayed, A., Gawad, A.A., and Borah, P.: Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng., A 508(1), 167 (2009).Google Scholar
DeCastro, C.L. and Mitchell, B.S.: Nanoparticles from mechanical attrition. In Synthesis, Functionalization, and Surface Treatment of Nanoparticles (American Scientific Publishers, Stevenson Ranch, 2002); pp. 115.Google Scholar
Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3), 570 (2009).Google Scholar
Stein, J., Lenczowski, B., Fréty, N., and Anglaret, E.: Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes. Carbon 50, 2264 (2012).Google Scholar
Ko, S., Kim, B., Kim, Y., Kim, T., Kim, K., McKay, B., and Shin, J.: Manufacture of CNTs-Al Powder Precursors for Casting of CNTs-Al Matrix Composites. Mater. Sci. Forum 765, 353 (2013).Google Scholar
Lamotte, E., Phillips, K., Perry, A., and Killias, H.: Continuously cast aluminium-carbon fibre composites and their tensile properties. J. Mater. Sci. 7(3), 346 (1972).Google Scholar
Baker, A., Braddick, D., and Jackson, P.: Fatigue of boron-aluminium and carbon-aluminium fibre composites. J. Mater. Sci. 7(7), 747 (1972).Google Scholar
Dong, S., Tu, J., and Zhang, X.: An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater. Sci. Eng., A 313(1), 83 (2001).Google Scholar
Meyers, M.A. and Chawla, K.K.: Mechanical Behavior of Materials, 2nd ed. (Cambridge Univ Press, Cambridge, UK, 2009), p. 345.Google Scholar
Hüller, M., Chernik, G.G., Fokina, E.L., and Budim, N.I.: Mechanical alloying in planetary mills of high accelerations. Rev. Adv. Mater. Sci. 18, 366 (2008).Google Scholar
Wu, J., Fang, H., Yoon, S., Kim, H., and Lee, C.: Measurement of particle velocity and characterization of deposition in aluminum alloy kinetic spraying process. Appl. Surf. Sci. 252(5), 1368 (2005).Google Scholar
Jodoin, B., Ajdelsztajn, L., Sansoucy, E., Zúñiga, A., Richer, P., and Lavernia, E.J.: Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings. Surf. Coat. Technol. 201(6), 3422 (2006).Google Scholar
Dieter, G.E.: Mechanical Metallurgy (McGraw-Hill, New York, 1976).Google Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1), 1 (2001).Google Scholar
Lavernia, E., Han, B., and Schoenung, J.: Cryomilled nanostructured materials: Processing and properties. Mater. Sci. Eng., A 493(1), 207 (2008).Google Scholar
Han, B., Ye, J., Tang, F., Schoenung, J., and Lavernia, E.: Processing and behavior of nanostructured metallic alloys and composites by cryomilling. J. Mater. Sci. 42(5), 1660 (2007).Google Scholar
Witkin, D. and Lavernia, E.J.: Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51(1), 1 (2006).Google Scholar
Lee, J., Jeong, T., Heo, J., Park, S.H., Lee, D.H., Park, J.B., Han, H.S., Kwon, Y.N., Kovalev, I., and Yoon, S.M.: Short carbon nanotubes produced by cryogenic crushing. Carbon 44(14), 2984 (2006).Google Scholar
Woo, D., Sneed, B., Peerally, F., Heer, F., Brewer, L., Hooper, J., and Osswald, S.: Synthesis of nanodiamond-reinforced aluminum metal composite powders and coatings using high-energy ball milling and cold spray. Carbon 63, 404 (2013).Google Scholar
Buchheit, T. and Vogler, T.: Measurement of ceramic powders using instrumented indentation and correlation with their dynamic response. Mech. Mater. 42(6), 599 (2010).Google Scholar
Fecht, H.J.: Nanostructure formation by mechanical attrition. Nanostruct. Mater. 6(1), 33 (1995).Google Scholar
Wang, H-T., Li, C-J., Yang, G-J., Li, C-X., Zhang, Q., and Li, W-Y.: Microstructural characterization of cold-sprayed nanostructured FeAl intermetallic compound coating and its ball-milled feedstock powders. J. Therm. Spray Technol. 16(5), 669 (2007).Google Scholar
Kaftelen, H. and Öveçoğlu, M.: Microstructural characterization and wear properties of ultra-dispersed nanodiamond (UDD) reinforced Al matrix composites fabricated by ball-milling and sintering. J. Compos. Mater. 46(13), 1521 (2012).Google Scholar
Morsi, K. and Esawi, A.: Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. J. Mater. Sci. 42(13), 4954 (2007).Google Scholar
Kumari, L., Zhang, T., Du, G., Li, W., Wang, Q., Datye, A., and Wu, K.: Thermal properties of CNT-alumina nanocomposites. Compos. Sci. Technol. 68(9), 2178 (2008).Google Scholar
Cho, S., Kikuchi, K., Miyazaki, T., Takagi, K., Kawasaki, A., and Tsukada, T.: Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scr. Mater. 63(4), 375 (2010).Google Scholar
Zhang, Q., Chen, G., Yoon, S., Ahn, J., Wang, S., Zhou, Q., Wang, Q., and Li, J.: Thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 66(16), 165440 (2002).Google Scholar
Osswald, S., Mochalin, V., Havel, M., Yushin, G., and Gogotsi, Y.: Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80(7), 075419 (2009).Google Scholar
Ferrari, A.C. and Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc., A 362(1824), 2477 (2004).Google Scholar
Osswald, S., Havel, M., and Gogotsi, Y.: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38(6), 728 (2007).Google Scholar
Delhaes, P., Couzi, M., Trinquecoste, M., Dentzer, J., Hamidou, H., and Vix-Guterl, C.: A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon 44(14), 3005 (2006).Google Scholar
Wu, C., Wang, P., Yao, X., Liu, C., Chen, D., Lu, G., and Cheng, H.: Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J. Alloys Compd. 420(1), 278 (2006).Google Scholar
Lee, J.H., Rhee, K.Y., and Park, S.J.: Effects of cryomilling on the structures and hydrogen storage characteristics of multi-walled carbon nanotubes. Int. J. Hydrogen Energy 35(15), 7850 (2010).Google Scholar
Kozlov, M., Hirabayashi, M., Nozaki, K., Tokumoto, M., and Ihara, H.: Transformation of C60 fullerenes into a superhard form of carbon at moderate pressure. Appl. Phys. Lett. 66(10), 1199 (1995).Google Scholar
George, R., Kashyap, K.T., Rahul, R., and Yamdagni, S.: Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53(10), 1159 (2005).Google Scholar
Ci, L., Ryu, Z., Jin-Phillipp, N.Y., and Rühle, M.: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54(20), 5367 (2006).Google Scholar
Kuzumaki, T., Ujiie, O., Ichinose, H., and Ito, K.: Mechanical characteristics and preparation of carbon nanotube fiber‐reinforced Ti composite. Adv. Eng. Mater. 2(7), 416 (2000).Google Scholar
He, H.H.: Two-Dimensional X-Ray Diffraction (Wiley Publishing, Hoboken, NJ, 2011).Google Scholar
He, J. and Schoenung, J.M.: Nanocrystalline Ni coatings strengthened with ultrafine particles. Metall. Mater. Trans. A 34(3), 673 (2003).Google Scholar
Zhang, X., Wang, H., Narayan, J., and Koch, C.: Evidence for the formation mechanism of nanoscale microstructures in cryomilled Zn powder. Acta Mater. 49(8), 1319 (2001).Google Scholar
Shewmon, P.G.: Transformations in Metals (McGraw-Hill, New York, 1969).Google Scholar
Zhou, F., Liao, X., Zhu, Y., Dallek, S., and Lavernia, E.: Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater. 51(10), 2777 (2003).Google Scholar
Weertman, J.: Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng., A 166(1), 161 (1993).Google Scholar
Mukai, T., Ishikawa, K., and Higashi, K.: Influence of strain rate on the mechanical properties in fine-grained aluminum alloys. Mater. Sci. Eng., A 204(1), 12 (1995).Google Scholar
Benjamin, J.: New Materials by Mechanical Alloying Techniques (DGM Informationgesellschaft, Oberursel, Germany, 1989), p. 3.Google Scholar
Esawi, A.M. and El Borady, M.A.: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68(2), 486 (2008).Google Scholar
Laha, T., Chen, Y., Lahiri, D., and Agarwal, A.: Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites, Part A 40(5), 589 (2009).Google Scholar
Zhou, S-M., Zhang, X-B., Ding, Z-P., Min, C-Y., Xu, G-L., and Zhu, W-M.: Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Composites, Part A 38(2), 301 (2007).Google Scholar