Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T12:20:26.925Z Has data issue: false hasContentIssue false

Low temperature sintering and elongated grain growth of 6H-SiC powder with AlB2 and C additives

Published online by Cambridge University Press:  31 January 2011

Hidehiko Tanaka*
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
You Zhou
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

6H(α)-SiC fine powder was sintered at normal pressure with additives of between 0.67 to 2.7 wt.% of AlB2 and 2 wt.% of C. The powder could be densified at 1850 °C. This sintering temperature was lower than that for SiC with B and C additives by 150–300 °C. During sintering, 6H-SiC partially transformed into 4H-SiC, and the transformation caused grain to grow and develop a nonspherical shape. The fracture toughness of sintered SiC increased with increases in the amount of AlB2 additive, the mean grain size, and the mean aspect ratio of grain shape. AlB2 and C additives are believed to have formed an Al8B4C7 compound which melted below 1800 °C and enhanced sintering and grain growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Knippenberg, W.F., Phillips Res. Rep. 18, 161273 (1963).Google Scholar
2.Tanaka, H., Silicon Carbide Ceramics-1, edited by Somiya, S. and Inomata, Y. (Elsevier Applied Science, New York, 1991), pp. 213238.CrossRefGoogle Scholar
3.Prochazka, S., Special Ceramics, edited by Popper, P. (British Ceramic Association, 1975), pp. 171181.Google Scholar
4.Tanaka, H., Inomata, Y., and Hagimura, A., J. Ceram. Soc. Jpn. 92, 461465 (1984).Google Scholar
5.Omori, M. and Takei, H., J. Mater. Sci. 23, 37443749 (1988).CrossRefGoogle Scholar
6.Mulla, M.A. and Kristic, V. D., Am. Ceram. Bull. 70, 439443 (1991).Google Scholar
7.Suzuki, K., Rep. Res. Lab. Asahi. Glass Co., Ltd. 36, 2536 (1986).Google Scholar
8.Kim, Y.W., Tanaka, H., Mitomo, M., and Otani, S., J. Ceram. Soc. Jpn. 103, 257261 (1995).CrossRefGoogle Scholar
9.Lee, J. K., Tanaka, H., and Kim, H., J. Mater. Sci. 15, 409411 (1996).Google Scholar
10.Inomata, Y. and Tanaka, H., J. Ceram. Soc. Jpn. 88, 353355 (1980).Google Scholar
11.Tanaka, H., J. Ceram. Soc. Jpn. 101, 13131314 (1993).CrossRefGoogle Scholar
12.Tanaka, H. and Iyi, N., J. Am. Ceram. Soc. 78, 12231229 (1995).CrossRefGoogle Scholar
13. Japanese Industrial Standard, JIS R 1607 (1990).Google Scholar
14.Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 533538 (1981).CrossRefGoogle Scholar
15.Inomata, Y., Mitomo, M., Inoue, Z., and Tanaka, H., J. Ceram. Soc. Jpn. 77, 130135 (1969).Google Scholar
16.Jepps, N. W. and Page, T. F., J. Cryst. Growth Characterization 7, 259307 (1983).CrossRefGoogle Scholar
17.Mitomo, M., Inomata, Y., and Kumanomido, M., J. Ceram. Soc. Jpn. 78, 224228 (1970).Google Scholar
18.Tajima, Yo and Kingery, W.D., J. Am. Ceram. Soc. 65, C2729 (1982).CrossRefGoogle Scholar
19.Padture, N. P., J. Am. Ceram. Soc. 77, 519523 (1994).CrossRefGoogle Scholar
20.Faber, K. T. and Evans, A. G., Acta Metall. 31, 565576 (1983).CrossRefGoogle Scholar
21.Bennison, S. J. and Lawn, B. R., Acta Metall. 37, 26592671 (1989).CrossRefGoogle Scholar
22.Becher, P. F., J. Am. Ceram. Soc. 74, 255269 (1991).CrossRefGoogle Scholar