Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:14:38.797Z Has data issue: false hasContentIssue false

Low pressure chemical vapor deposition of silicon nitride using the environmentally friendly tris(dimethylamino)silane precursor

Published online by Cambridge University Press:  31 January 2011

R. A. Levy
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102–1982
X. Lin
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102–1982
J. M. Grow
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102–1982
H. J. Boeglin
Affiliation:
Olin Chemicals Research, Cheshire, Connecticut 06410
R. Shalvoy
Affiliation:
Olin Chemicals Research, Cheshire, Connecticut 06410
Get access

Abstract

This study investigates the use of the environmentally benign precursor tri(dimethylamino)silane (TDMAS) with NH3 to synthesize silicon nitride films by low pressure chemical vapor deposition. The growth kinetics are investigated as a function of deposition temperature, total pressure, and NH3/TDMAS flow ratios. The deposits are found to be essentially stoichiometric and to contain ∼5 at. % carbon when appropriate NH3 concentrations are present. The films are found in all cases to be amorphous and highly tensile. For optimized processing conditions, values of the refractive index are close to those reported for Si3N4. The film density is observed to increase with higher deposition temperatures up to 800 °C and then decrease due to the onset of gas phase nucleation effects. This behavior is readily reflected in the etch rate of those films. FTIR spectra reveal the presence of hydrogen even at high deposition temperatures (900 °C). Hardness and Young's modulus of the films are seen to increase with higher deposition temperatures, reaching saturation values near 20 and 185 GPa, respectively, above 800 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kern, W., in Microelectronic Materials and Processes, edited by Levy, R.A. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), p. 247.CrossRefGoogle Scholar
2.Oda, M. and Yoshihara, H., in Materials Aspects of X-ray Lithography, edited by Celler, G.K. and Maldonado, J. R. (Mater. Res. Soc. Symp. Proc. 306, Pittsburgh, PA, 1993), p. 69.Google Scholar
3.Morosanu, C. E., Thin Solid Films 65, 171 (1980).CrossRefGoogle Scholar
4.Bean, K. E., Glein, P. S., and Yeakley, R. L., J. Electrochem. Soc. 114, 733 (1967).CrossRefGoogle Scholar
5.Roenigk, K. F. and Jensen, K.F., J. Electrochem. Soc. 134, 1777 (1987).CrossRefGoogle Scholar
6.Gregory, J. A., Young, D.J., Mountain, R. W., and Doherty, C.L. Jr., Thin Solid Films 206, 11 (1991).CrossRefGoogle Scholar
7.Zhang, S. L., Wang, J. T., Kaplan, W., and Ostling, M., Thin Solid Films 213, 182 (1992).CrossRefGoogle Scholar
8.Grow, J. M., Levy, R.A., Fan, X., and Bhaskaran, M., Mater. Lett. 23, 187 (1995).CrossRefGoogle Scholar
9.Boudreau, M., Boumerzoug, M., Kruzelecky, R.V., Mascher, P., Jessop, P. E., and Thompson, D. A., in III-V Electronic and Photonic Device Fabrication and Performance, edited by Jones, K.S., Pearton, S. J., and Kanber, H. (Mater. Res. Soc. Symp. Proc. 300, Pittsburgh PA, 1993), p. 183.Google Scholar
10.CRC Handbook of Chemistry and Physics, edited by Weast, R.C. and Astle, M. J., 60th ed. (CRC Press Inc., Boca Raton, FL, 1980).Google Scholar
11.Habraken, F.H.P.M., Kuiper, A.E.T., Van Oostrom, A., Tamminga, Y., and Theeten, J. B., J. Appl. Phys. 53, 404 (1982).CrossRefGoogle Scholar
12.Habraken, F. H. P. M., Tijhaar, R. H. G., van der Weg, W. F., Kuiper, A. E. T., and Willemsen, M. F. C., J. Appl. Phys. 59, 447 (1986).CrossRefGoogle Scholar
13.Levy, R. A., Resnick, D.J., Frye, R.C., Yanof, A.W., Wells, G.M., and Cerrina, F., J. Vac. Sci. Technol. B6, 154 (1988).CrossRefGoogle Scholar
14.Grow, J. M. and Levy, R.A., J. Mater. Res. 9, 2072 (1994).CrossRefGoogle Scholar