Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:23:08.375Z Has data issue: false hasContentIssue false

Loss spectra of pure and La-doped MgTiO3 microwave ceramics

Published online by Cambridge University Press:  03 March 2011

V.M. Ferreira
Affiliation:
Departamento de Engenharia Cerâmica e Vidro/INESC, Universidade de Aveiro, 3800 Aveiro, Portugal
J.L. Baptista
Affiliation:
Departamento de Engenharia Cerâmica e Vidro/INESC, Universidade de Aveiro, 3800 Aveiro, Portugal
J. Petzelt
Affiliation:
Institute of Physics, Czech Academy of Sciences, Na Slovance 2. 18040 Prague 8, Czech Republic
G.A. Komandin*
Affiliation:
Institute of Physics, Czech Academy of Sciences, Na Slovance 2. 18040 Prague 8, Czech Republic
V.V. Voitsekhovskii*
Affiliation:
Institute of Physics, Czech Academy of Sciences, Na Slovance 2. 18040 Prague 8, Czech Republic
*
a)On leave from the Institute of General Physics, Russian Academy of Sciences, Vavilov Street 38, 177333 Moscow, Russia.
a)On leave from the Institute of General Physics, Russian Academy of Sciences, Vavilov Street 38, 177333 Moscow, Russia.
Get access

Abstract

Pure and La-doped magnesium titanate (MgTiO3) microwave ceramics were sintered and structurally and dielectrically characterized. Doping provides small inclusions of a second phase found to correspond to the La2Ti2O7 compound. It increases the microwave dielectric loss appreciably and gives rise to three absorption peaks in the submillimeter range assigned to polar phonons of the La2Ti2O7 structure. This assignment was confirmed by a direct reflectivity measurement on La2Ti2O7 ceramics. From the temperature dependence of submillimeter losses in the pure sample, one can estimate that from 1000 down to at least 8 GHz about half of the room temperature losses are intrinsic, i.e., due to two-phonon absorption processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Subba Rao, T., Murthy, V. R. K., and Viswanathan, B., Ferroelectrics 102, 155160 (1990).CrossRefGoogle Scholar
2Plourde, J. K. and Ren, C. L., IEEE Trans. Mic. Theory and Tech. 29 (8), 754766 (1981).CrossRefGoogle Scholar
3Ouchi, H. and Kawashima, S., Jpn. J. Appl. Phys. 24 (Suppl. 24-2), 6064 (1985).CrossRefGoogle Scholar
4Wakino, K., Ferroelectrics 91, 6986 (1989).CrossRefGoogle Scholar
5Tamura, H. and Katsube, M., U.S. Patent 4224213 (1980).Google Scholar
6Sato, T., Miyamoto, R., and Fukasawa, A., Jpn. J. Appl. Phys. 20 (Suppl. 20-4), 6064 (1981).Google Scholar
7Ferreira, V. M., Azough, F., Freer, R., and Baptista, J. L., Ferroelectrics 133, 127132 (1992).CrossRefGoogle Scholar
8Ferreira, V.M., Kamba, S., Petzelt, J., and Baptista, J. L., J. Mater. Sci. 28, 58945900 (1993).CrossRefGoogle Scholar
9Wakino, K., Murata, M., and Tamura, H., J. Am. Ceram. Soc. 69 (1), 3437 (1986).CrossRefGoogle Scholar
10Tamura, H., Sagala, D.A., and Wakino, K., Jpn. J. Appl. Phys. 25 (6), 787791 (1986).CrossRefGoogle Scholar
11Petzelt, J., Pacesova, S., Fousek, J., Kamba, S., Zelezny, V., Koukal, V., Schwarzbach, J., Gorshunov, B.P., Kozlov, G. V., and Volkov, A. A., Ferroelectrics 93, 7785 (1989).CrossRefGoogle Scholar
12Petzelt, J., Zurmuhlen, R., Bell, A., Kamba, S., Kozlov, G.V., Volkov, A. A., and Setter, N., Ferroelectrics 133, 205210 (1992).CrossRefGoogle Scholar
13Pechini, M.P., U.S. Patent 3 330697 (1967).Google Scholar
14Hakki, B.W. and Coleman, P.D., IRE Trans. Mic. Theory and Tech. 8, 402410 (1960).CrossRefGoogle Scholar
15Kobayashi, Y. and Katoh, M., IEEE Trans. Mic. Theory and Tech. 33 (7), 586592 (1985).CrossRefGoogle Scholar
16Fuierer, P. A. and Newnham, R. E., J. Am. Ceram. Soc. 74 (11), 28762881 (1991).CrossRefGoogle Scholar
17Takahashi, J., Kageyama, K., and Kodaira, K., Jpn. J. Appl. Phys. 32 (9B), 43274331 (1993).CrossRefGoogle Scholar
18Tagantsev, A.K., Petzelt, J., and Setter, N., Solid State Commun. 87 (12), 11171120 (1993).CrossRefGoogle Scholar
19Gurevich, V. L. and Tagantsev, A. K., Adv. Phys. 40 (6), 719767 (1991).CrossRefGoogle Scholar
20Petzelt, J. and Setter, N., Ferroelectrics 150, 89102 (1993).CrossRefGoogle Scholar