Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:16:20.520Z Has data issue: false hasContentIssue false

Local structure and defects in ultrahigh-temperature materials of borosilicon carbonitride

Published online by Cambridge University Press:  31 January 2011

Kazuhiro Yamamoto*
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
Naoya Tsuganezawa
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
Shin-ichi Makimura
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
Daigo Sawa
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
Shin-ichi Nakahigashi
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
Kazuo Kojima
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
Yoshio Hasegawa
Affiliation:
Art Kagaku Co., Ltd., Tohkai-Mura, Naka-Gun, Ibaraki 319-1112, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have investigated structural changes of amorphous borosilicon carbonitride materials with atomic ratios of B/Si/C of 2/3/6 and 4/3/6 calcined at several temperatures. The boron K-edge x-ray absorption spectra showed that the structures of both hexagonal boron nitride ([BN3] unit) with nitrogen-void defects ([BN2] and [BN1] units) and boron oxide existed in the samples, and the relative peak intensity due to the [BN3] unit became stronger by increasing the calcined temperature. It is thought that the well-developed B–N chain and the borosilicate glass coating lead to the high resistance to oxidation at high temperature. X-ray diffraction and infrared measurements followed the x-ray absorption near-edge spectroscopy findings.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J.Aldinger, F.: A silicoboron carbonitride ceramic stable at 2000 °C. Nature 382, 796 1996CrossRefGoogle Scholar
2Jäschke, T.Jansen, M.: Improved durability of Si/B/N/C random inorganic networks. J. Eur. Ceram. Soc. 25, 211 2005CrossRefGoogle Scholar
3Haug, J., Lamparter, P., Weinmann, M.Aldinger, F.: Diffraction study on the atomic structure and phase separation of amorphous ceramics in the Si-(B)-C-N system: 2. Si-B-C-N ceramics. Chem. Mater. 16, 83 2004CrossRefGoogle Scholar
4Franke, R., Bender, S., Jüngermann, H., Kroschell, M.Jansen, M.: The determination of structural units in amorphous Si-B-N-C ceramics by means of Si, B, N and C K-XANES spectroscopy. J. Electron Spectrosc. 101–103, 641 1999CrossRefGoogle Scholar
5Janakiraman, N., Zern, A., Weinmann, M., Aldinger, F.Singh, P.: Phase evolution and crystallization in Si-B-C-N ceramics derived from a polyborosilazane precursor: Microstructural characterization. J. Eur. Ceram. Soc. 25, 509 2005CrossRefGoogle Scholar
6Heinemann, D., Assenmacher, W., Mader, W., Kroschel, M.Jansen, M.: Structural characterization of amorphous ceramics in the system Si-B-N-(C) by means of transmission electron microscopy methods. J. Mater. Res. 14, 3746 1999CrossRefGoogle Scholar
7Berger, F., Müller, A., Aldinger, F.Müller, K.: Solid-state NMR investigations on Si-B-C-N ceramics derived from boron-modified poly(allylmethylsilazane). Z. Anorg. Allg. Chem. 631, 355 2005CrossRefGoogle Scholar
8Jeschke, G., Kroschel, M.Jansen, M.: A magnetic resonance study on the structure of amorphous networks in the Si-B-N(-C) system. J. Non-Cryst. Solids 260, 216 1999CrossRefGoogle Scholar
9Wüllen, L.Jansen, M.: Random inorganic networks: A novel class of high-performance ceramics. J. Mater. Chem. 11, 223 2001CrossRefGoogle Scholar
10Soda, Y., Kono, T., Sanokawa, Y.Hasegawa, Y.: Japan Patent No. H7-011001,1995 in JapaneseGoogle Scholar
11Hasegawa, Y.: Preparation of polyorganoborosilazanes and conversion into ultra-high-temperature borosilicon carbonitrides. J. Ceram. Soc. Jpn. 14, 480 2006CrossRefGoogle Scholar
12Handa, K., Ozutsumi, K.Kojima, K.: XAFS at Ritsumeikan SR center. Phys. Scr. T115, 992 2005CrossRefGoogle Scholar
13Li, D., Bancroft, G.M.Fleet, M.E.: B K-edge XANES of crystalline and amorphous inorganic materials. J. Electron Spectrosc. 79, 71 1996CrossRefGoogle Scholar
14Terminello, L.J., Chaiken, A., Lapiano-Smith, D.A., Doll, G.L.Sato, T.: Morphology and bonding measured from boron-nitride powders and films using near-edge x-ray absorption fine structure. J. Vac. Sci. Technol., A 12, 2462 1994CrossRefGoogle Scholar
15Fleet, M.E.Muthupari, S.: Coordination of boron in alkali borosilicate glasses using XANES. J. Non-Cryst. Solids 255, 233 1999CrossRefGoogle Scholar
16Jiménez, I., Terminello, L.J., Himpsel, F.J., Grush, M.Callcott, T.A.: Photoemission, x-ray absorption and x-ray emission study of boron carbides. J. Electron Spectrosc. 101–103, 611 1999CrossRefGoogle Scholar
17Jiménez, I., Jankowski, A., Terminello, L.J., Carlisle, J.A., Sutherland, D.G.J., Doll, G.L., Mantese, J.V., Tong, W.M., Shuh, D.K.Himpsel, F.J.: Near-edge x-ray absorption fine structure study of bonding modifications in BN thin films by ion implantation. Appl. Phys. Lett. 68, 2816 1996CrossRefGoogle Scholar
18Nakamura, K.: Preparation and properties of boron nitride films by metal organic chemical vapor deposition. J. Electrochem. Soc. 133, 1120 1986CrossRefGoogle Scholar
19Gao, R., Jiménez, I., Agulló-Rueda, F., Albella, J.M., Czigány, Zs.Hultman, L.: Transition from amorphous boron carbide to hexagonal boron carbon nitride thin films induced by nitrogen ion assistance. J. Appl. Phys. 92, 5177 2002Google Scholar
20Parsons, J.L.Milberg, M.E.: Vibrational spectra of vitreous B2O3.xH2O. J. Am. Ceram. Soc. 43, 326 1960CrossRefGoogle Scholar
21Meng, G.W., Cui, Z., Zhang, L.D.Phillipp, F.: Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles. J. Cryst. Growth 209, 801 2000CrossRefGoogle Scholar
22Wada, N., Solin, S.A., Wong, J.Prochazka, S.: Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4. J. Non-Cryst. Solids 43, 7 1981CrossRefGoogle Scholar
23Hojo, J., Eto, K., Uehara, M.Enomoto, N.: Spectroscopic evaluation of nanocomposite formation from amorphous complex compound in Si3N4-BN system. Scripta Mater. 44, 2169 2001CrossRefGoogle Scholar
24Yoldas, B.E.: Thermochemically induced photoluminescence in sol gel-derived oxide networks. J. Non-Cryst. Solids 147–148, 614 1992CrossRefGoogle Scholar
25Yamazaki, M.Kojima, K.: Up-conversion fluorescence and electron-spin-resonance in Er3+ doped Geo2 heated gel prepared via a sol-gel process. J. Mater. Sci. Lett. 114, 813 1995CrossRefGoogle Scholar
26Kojima, K., Fujita, T.Yamazaki, M.: Spectroscopic properties of Er3+-doped Na2O-GeO2 gel. J. Non-Cryst. Solids 259, 63 1999CrossRefGoogle Scholar
27Kojima, K., Tsuchiya, K.Wada, N.: Sol-gel synthesis of Nd3+-doped GeO2 glasses and their optical properties. J. Sol.-Gel Sci. Technol. 19, 511 2000CrossRefGoogle Scholar
28Kojima, K., Ogura, F., Wada, N., Yamamoto, K., Fujita, T.Yamazaki, M. EPR study of x-ray and UV irradiated GeO2glasses prepared by the sol-gel method: EPR in the 21st Century in Proceedings of the Third Asia Pacific EPR/ESR Symposium EPR/ESR Kobe 2001 247–252Google Scholar