Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:47:40.241Z Has data issue: false hasContentIssue false

Local structural distortion and interrelated phonon mode studies in yttrium chromite

Published online by Cambridge University Press:  30 January 2017

Venkateswara Rao Mannepalli
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, Telangana, India
Rajamani Raghunathan
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India
Ranjith Ramadurai*
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502205, Telangana, India
Adrian David
Affiliation:
Laboratoire CRISMAT, ENSICAEN/CNRS, Caen 14050, France
Wilfrid Prellier
Affiliation:
Laboratoire CRISMAT, ENSICAEN/CNRS, Caen 14050, France
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

YCrO3 (YCO) perovskite has been originally reported to be a biferroic with antiferromagnetic and ferroelectric (FE) properties, in which the origin of FE in YCO remains ambiguous. However, further studies reveal the presence of a global orthorhombic Pnma structure with a local structural heterogeneity. In this study, we discuss the high temperature phonon modes and their inter-relation to local structural distortions in YCO perovskite through Raman spectroscopy experiments and density functional theory (DFT) calculations. We observe that the Raman active B3g(3) out of phase scissor mode (SM) disappears above the dielectric transition temperature (T c) commensurate with the local structural distortions. DFT calculations show that the transformation of a room temperature Y-cation distorted orthorhombic structure to a perfect orthorhombic structure above the dielectric transition temperature in which the Y cation is undisplaced could lead to the conversion of SM with symmetry B3g to Raman inactive B1u mode.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Scott T. Misture

References

REFERENCES

Carini, G.F. II, Anderson, H.U., Sparlin, D.M., and Nasrallah, M.M.: Electrical conductivity, Seebeck coefficient and defect chemistry of Ca-doped YCrO3 . Solid State Ionics 49, 233 (1991).CrossRefGoogle Scholar
Sfeir, J.: LaCrO3-based anodes: Stability considerations. J. Power Sources 118, 276 (2003).CrossRefGoogle Scholar
Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
Nivot, C., Bernard, J., Lelievre, C., Haussome, J-M., and Houivet, D.: Moisture sensitivity of YCr1−x Mn x O3 . Ceram. Interfaces 36, 929 (2010).CrossRefGoogle Scholar
Ngueteu Kamlo, A., Bernard, J., Lelievre, C., and Houivet, D.: Synthesis and NTC properties of YCr1−x Mn x O3 ceramics sintered under nitrogen atmosphere. J. Eur. Ceram. Soc. 31, 1457 (2011).CrossRefGoogle Scholar
Serrao, C.R., Kundu, A.K., Krupanidhi, S.B., Waghmare, U.V., and Rao, C.N.R.: Biferroic YCrO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 72, 220101 (2005).CrossRefGoogle Scholar
Bhadram, V.S., Rajeswaran, B., Sundaresan, A., and Narayana, C.: Spin phonon coupling in multiferroic RCrO3 (R = Y, Lu, Gd, Eu, Sm): A Raman study. Europhys. Lett. 101, 17008 (2013).CrossRefGoogle Scholar
Ramesha, K., Llobet, A., Proffen, T., Serrao, C.R., and Rao, C.N.R.: Observation of local non-centrosymmetry in weakly biferroic YCrO3 . J. Phys.: Condens. Matter 19, 102202 (2007).Google Scholar
Rajeswaran, B., Khomskii, D.I., Zvezdin, A.K., Rao, C.N.R., and Sundaresan, A.: Field-induced polar order at Neel temperature of chromium in rare earth orthochromites: Interplay of rare earth and Cr magnetism. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 214409 (2012).CrossRefGoogle Scholar
Sharma, Y., Sahoo, S., Perez, W., Mukherjee, S., Gupta, R., Garg, A., Chatterjee, R., and Katiyar, R.S.: Phonons and magnetic excitation correlations in weak ferromagnetic YCrO3 . J. Appl. Phys. 115, 183907 (2014).CrossRefGoogle Scholar
Tiwari, B., Dixit, A., Naik, R., Lawes, G., and Rao, M.S.R.: Dielectric and optical phonon anomalies near antiferromagnetic ordering in LaCrO3: A possible near room temperature magneto dielectric system. Appl. Phys. Lett. 103, 152906 (2013).CrossRefGoogle Scholar
Seo, J-D. and Son, J.Y.: Room temperature ferroelectricity of YCrO3 thin films on Rh single crystals. J. Cryst. Growth 375, 53 (2013).CrossRefGoogle Scholar
Duran, A., Arevalo-Lopez, A.M., Castillo-Martinez, E., Garcia-Guaderrama, M., Moran, E., Cruz, M.P., Fernandez, F., and Alario-Franco, M.A.: Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis. J. Solid State Chem. 183, 1863 (2010).CrossRefGoogle Scholar
Niitaka, S., Azuma, M., Takano, M., Nishibori, E., Takata, M., and Sakata, M.: Crystal structure and dielectric and magnetic properties of BiCrO3 as a ferroelectromagnet. Solid State Ionics 172, 557 (2004).CrossRefGoogle Scholar
Alvarez, G., Montiel, H., Cruz, M.P., Durán, A.C., and Zamorano, R.: Resonant and non-resonant microwave absorption in the magnetoelectric YCrO3 through ferro-paraelectric transition. J. Alloys Compd. 509, L331 (2011).CrossRefGoogle Scholar
Alvarez, G., Montiel, H., Cruz, M.P., Durán, A.C., and Zamorano, R.: Weak ferromagnetism in the magnetoelectric YCrO3 detected by microwave power absorption measurements. Solid State Commun. 150, 1597 (2010).CrossRefGoogle Scholar
Saha, S., Chanda, S., Dutta, A., and Sinha, T.P.: Dielectric relaxation and phonon modes of NdCrO3 nanostructure. J. Sol-Gel Sci. Technol. 69, 553 (2013).CrossRefGoogle Scholar
Rodrigues-Carvajal, J.: An introduction to the program fullprof rietveld refinement and pattern matching analysis. (Laboratoire Leon Brillioun CEA-CNRS, France, 2000).Google Scholar
Weber, M.C., Kreisel, J., Thomas, P.A., Newton, M., Sardar, K., and Walton, R.I.: Phonon Raman scattering of RCrO3 pervoskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B: Condens. Matter Mater. Phys. 85, 054303 (2012).CrossRefGoogle Scholar
Zhou, J-S., Alonso, J.A., Pomjakushin, V., Goodenough, J.B., Ren, Y., Yan, J-Q., and Cheng, J-G.: Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth pervoskites RCrO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 81, 214115 (2010).CrossRefGoogle Scholar
Wojdyr, M.: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126 (2010).CrossRefGoogle Scholar
Udagawa, M., Kohn, K., Koshizuka, N., Tsushima, T., and Tsushima, K.: Influence of magnetic ordering on the phonon Raman spectra in YCrO3 and GdCrO3 . Solid State Commun. 16, 779 (1975).CrossRefGoogle Scholar
Todorov, N.D., Abrashev, M.V., Ivanov, V.G., Tsutsumanova, G.G., Marinova, V., Wang, Y-Q., and Iliev, M.N.: Comparative Raman study of isostructural YCrO3 and YMnO3: Effects of structural distortions and twinning. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 224303 (2011).CrossRefGoogle Scholar
Abrashev, M.V., Bäckström, J., Börjesson, L., Popov, V.N., Chakalov, R.A., Kolev, N., Meng, R-L., and Iliev, M.: Raman spectroscopy of CaMnO3: Mode assignment and relationship between Raman line intensities and structural distortions. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 184301 (2002).CrossRefGoogle Scholar
Catalan, G., O’Neill, D., Bowman, R.M., and Gregg, J.M.: Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach. Appl. Phys. Lett. 77, 3078 (2000).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M.: Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).Google ScholarPubMed
Ray, N. and Waghmare, U.V.: Coupling between magnetic ordering and structural instabilities in pervoskite biferroics: A first-principles study. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 134112 (2008).CrossRefGoogle Scholar
Supplementary material: File

Mannepalli supplementary material

Table S1

Download Mannepalli supplementary material(File)
File 30.1 KB