Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T15:13:46.006Z Has data issue: false hasContentIssue false

Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons

Published online by Cambridge University Press:  07 September 2011

Andrzej Kozdras*
Affiliation:
Faculty of Physics, Opole University of Technology, Opole PL-45370, Poland
Roman Golovchak
Affiliation:
Lviv Scientific Research Institute of Materials of SRC “Carat”, Lviv UA-79031, Ukraine; and Institute of Physics of Jan Dlugosz University, Czestochowa PL-42201, Poland
Oleh Shpotyuk
Affiliation:
Lviv Scientific Research Institute of Materials of SRC “Carat”, Lviv UA-79031, Ukraine; and Institute of Physics of Jan Dlugosz University, Czestochowa PL-42201, Poland
Stefan Szymura
Affiliation:
School of Higher Vocational Education in Nysa, Institute of Management, Nysa PL-48300, Poland
Allisson Saiter
Affiliation:
AMME International Laboratory, LECAP EA4528, Institut des Matériaux de Rouen, Université de Rouen, Faculté des Sciences, 76801 Saint Etienne du Rouvray, France
Jean-Marc Saiter
Affiliation:
AMME International Laboratory, LECAP EA4528, Institut des Matériaux de Rouen, Université de Rouen, Faculté des Sciences, 76801 Saint Etienne du Rouvray, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Physical aging induced by an exposure of As–Se, As–S, and Ge–Se glasses to the light of different discrete wavelengths is studied using differential scanning calorimetry technique. The value of this effect is compared to the physical aging caused by natural storage in the dark. It is shown that a choice of As or Ge atoms does not influence significantly the spectral dependence of light-assisted physical aging, whereas substitution of Se with S causes drastic changes in the magnitude of the effect. The mechanism of the observed light-induced phenomena is discussed in terms of transient and metastable displacements of network chalcogen atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kolomiets, B.T. and Goryunova, N.A.: Properties and structure of ternary semiconductor systems: 2. Electrical properties and structure of materials in thallium, antimony, and arsenic selenide systems. Zh. Tekh. Fiz. 25(12), 2069 (1955).Google Scholar
2.Kolobov, A.V. (Ed.): Photo-Induced Metastability in Amorphous Semiconductors (Wiley-VCH, Weinheim, 2003).CrossRefGoogle Scholar
3.Zakery, A. and Elliott, S.R.: Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer-Verlag, Berlin/Heidelberg, 2007).Google Scholar
4.Krecmer, P., Moulin, A.M., Stephenson, R.J., Rayment, T., Welland, M.E., and Elliott, S.R.: Reversible nanocontraction and dilatation in a solid induced by polarized light. Science 277, 1799 (1997).CrossRefGoogle Scholar
5.Stuchlik, M., Krecmer, P., and Elliott, S.R.: Opto-mechanical effect in chalcogenide glasses. J. Opt. Adv. Mater. 3, 361 (2001).Google Scholar
6.Ganjoo, A., Ikeda, Y., and Shimakawa, K.: In situ photoexpansion measurements of amorphous As2S3 films: Role of photocarriers. Appl. Phys. Lett. 74, 2119 (1999).CrossRefGoogle Scholar
7.Kuzukawa, Y., Ganjoo, A., and Shimakawa, K.: Photoinduced structural changes in obliquely deposited As- and Ge-based amorphous chalcogenides: Correlation between changes in thickness and band gap. J. Non-Cryst. Solids 227230, 715 (1998).CrossRefGoogle Scholar
8.Tanaka, K.: Photoinduced fluidity in chalcogenide glasses. C. R. Chem. 5, 805 (2002).CrossRefGoogle Scholar
9.Trunov, M.L., Nagy, P.M., Takats, V., Lytvyn, P.M., Kokenyesi, S., and Kalman, E.: Surface morphology of as-deposited and illuminated As–Se chalcogenide thin films. J. Non-Cryst. Solids 355, 1993 (2009).CrossRefGoogle Scholar
10.Poborchii, V., Kolobov, A., and Tanaka, Ka.: Photomelting of selenium at low temperature. Appl. Phys. Lett. 74(2), 215 (1999).CrossRefGoogle Scholar
11.Tallman, R.E., Weinstein, B.A., Reznik, A., Kubota, M., Tanioka, K., and Rowlands, J.A.: Photo-crystallization in a-Se imaging targets: Raman studies of competing effects. J. Non-Cryst. Solids 354, 4577 (2008).CrossRefGoogle Scholar
12.Kovalskiy, A., Miller, A.C., Jain, H., and Mitkova, M.: In situ measurements of X-ray-induced silver diffusion into a Ge30Se70 thin film. J. Am. Ceram. Soc. 91(3), 760 (2008).CrossRefGoogle Scholar
13.Shimakawa, K., Kolobov, A., and Elliott, S.R.: Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 44(6), 475 (1995).CrossRefGoogle Scholar
14.Frumar, M., Firth, A.P., and Owen, A.E.: A model for photostructural changes in the amorphous As-S system. J. Non-Cryst. Solids 5960, 921 (1983).CrossRefGoogle Scholar
15.Frumar, M., Vlcek, M., Cernosek, Z., Polak, Z., and Wagner, T.: Photoinduced changes of the structure and physical properties of amorphous chalcogenides. J. Non-Cryst. Solids 213&214, 215 (1997).CrossRefGoogle Scholar
16.Tanaka, K.: Mechanisms of photodarkening in amorphous chalcogenides. J. Non-Cryst. Solids 5960, 925 (1983).CrossRefGoogle Scholar
17.Tanaka, K., Saitoh, A., and Terakado, N.: Photoinduced phenomena in group VIb glasses. J. Mater. Sci. - Mater. Electron. 20, 38 (2009).CrossRefGoogle Scholar
18.Struik, L.C.E.: Physical Ageing in Amorphous Polymers and Other Materials (Elsevier, New York, 1978).Google Scholar
19.Saiter, J.M., Arnoult, M., and Grenet, J.: Very long physical ageing in inorganic polymers exemplied by the GexSe1-x vitreous system. Physica B 355, 370 (2005).CrossRefGoogle Scholar
20.Lucas, P., King, E.A., Doraiswamy, A., and Jivaganont, P.: Competitive photostructural effects in Ge-Se glass. Phys. Rev. B 71, 104207 (2005).CrossRefGoogle Scholar
21.Lucas, P., King, E.A., Horner, A.D., Johnson, B.R., and Sundaram, S.K.: Photostructural relaxation in As–Se–S glasses: Effect of network fragility. J. Non-Cryst. Solids 352, 2067 (2006).CrossRefGoogle Scholar
22.Calvez, L., Yang, Zh., and Lucas, P.: Light-induced matrix softening of Ge-As-Se network glasses. Phys. Rev. Lett. 101, 177402 (2008).CrossRefGoogle ScholarPubMed
23.Lucas, P.: Energy landscape and photoinduced structural changes in chalcogenide glasses. J. Phys. Condens. Matter. 18, 5629 (2006).CrossRefGoogle Scholar
24.Larmagnac, J.P., Grenet, J., Michon, P.: Photodependence of sub-Tg relaxation in a-Se thin films. Phil. Mag. B45, 627 (1982).CrossRefGoogle Scholar
25.Vautier, C., Derrey, T., Saiter, J.M., and Lebaudy, Ph.: Photorelaxation in amorphous GexSel-x (0 < x < 0.08) thin films. J. Non-Cryst. Solids 131133, 520 (1991).CrossRefGoogle Scholar
26.Golovchak, R., Kozdras, A., and Shpotyuk, O.: Physical ageing in glassy As–Se induced by above-bandgap photoexposure. Solid State Commun. 145, 423 (2008).CrossRefGoogle Scholar
27.Golovchak, R., Gorecki, Cz., Kozdras, A., Shpotyuk, O.: Physical ageing effects in vitreous arsenic selenides. Solid State Commun. 137, 67 (2006).CrossRefGoogle Scholar
28.Golovchak, R., Kozdras, A., Shpotyuk, O., Kozyukhin, S., and Saiter, J-M.: Long-term ageing behaviour in Ge–Se glasses. J. Mater. Sci. 44(15), 3962 (2009).CrossRefGoogle Scholar
29.Golovchak, R., Kozdras, A.: Gorecki, Cz., Shpotyuk, O.: Gamma-irradiation-induced physical ageing in As–Se glasses. J. Non-Cryst. Solids 352 (42), 4960 (2006).CrossRefGoogle Scholar
30.Golovchak, R., Kozdras, A., Kozyukhin, S., and Shpotyuk, O.: High-energy γ-irradiation effect on physical ageing in Ge–Se glasses. Nucl. Instrum. Methods Phys. Res. B267, 2958 (2009).CrossRefGoogle Scholar
31.Boolchand, P., Lucovsky, G., Phillips, J.C., and Thorpe, M.F.: Self-organization and the physics of glassy networks. Philos. Mag. 85, 3823 (2005).CrossRefGoogle Scholar
32.Tsuchihashi, S. and Kawamoto, Y.: Properties and structure of glasses in the system As-S. J. Non-Cryst. Solids 5, 286 (1971).CrossRefGoogle Scholar
33.Shimakawa, K.: Photon effects in chalcogenide glasses. J. Optoelectron. Adv. Mater. 9(10), 2973 (2007).Google Scholar
34.Tanaka, K.: Configurational and structural models for photodarkening in glassy chalcogenides. Jpn. J. Appl. Phys. 25(6), 779 (1986).CrossRefGoogle Scholar
35.Nagels, P., Tichy, L., Mertens, R., and Callaerts, R.: Low-temperature photodarkening of the AsxSe100-x system prepared by PECVD. Mater. Lett. 46, 234 (2000).CrossRefGoogle Scholar
36.Oheda, H.: The exponential absorption edge in amorphous Ge-Se compounds. Jpn. J. Appl. Phys. 18, 1973 (1979).CrossRefGoogle Scholar
37.Derrey, T., Saiter, J.M., and Vautier, C.: Photodarkening of amorphous Se100-xGex alloys (2 < x < 16). Mater. Lett. 4 (8), 365 (1986).CrossRefGoogle Scholar
38.Zohair El Gharras, M.: Contribution to the Role of Defects in the Transport Phenomena in the Amorphous Ge-Se (Thesis, Faculty of Science, University of Rouen, 1989).Google Scholar
39.Averyanov, V.L.: Investigations of local states in vitreous semiconductors of Se-As system. Fiz. Tehn. Polupr. 6(9), 1709 (1972).Google Scholar
40.Golovchak, R., Kovalskiy, A., Miller, A.C., Jain, H., and Shpotyuk, O.: Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy. Phys. Rev. B 76, 125208 (2007).CrossRefGoogle Scholar
41.Feltz, A.: Amorphous Inorganic Materials and Glasses (VCH, Weinheim, 1993).Google Scholar
42.Mott, N.F. and Davis, E.A.: Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1971).Google Scholar
43.Shieh, S.H.M. and LaCourse, W.C.: Ageing and sub-Tg relaxation in arsenic selenide glass fibers. Mater. Chem. Phys. 35, 160 (1993).CrossRefGoogle Scholar
44.McEnroe, D.J. and LaCourse, W.C.: Tensile strengths of Se, As2S3, As2Se3, and Ge30As15Se55 glass fibers. J. Am. Ceram. Soc. 72, 1491 (1989).CrossRefGoogle Scholar
45.Borisova, Z.U.: Glassy Semiconductors (Plenum Press, New York/London, 1981).CrossRefGoogle Scholar
46.Tanaka, K.: Midgap photon effects in As2S3 glass. Philos. Mag. Lett. 84(9), 601 (2004).CrossRefGoogle Scholar
47.Tanaka, K.: Photo-induced phenomena in chalcogenide glass: Comparison with those in oxide glass and polymer. J. Non-Cryst. Solids 352, 2580 (2006).CrossRefGoogle Scholar
48.Ho, N., Laniel, J.M., Vallee, R., and Villeneuve, A.: Photosensitivity of As2S3 chalcogenide thin films at 1.5 μm. Opt. Lett. 28, 965 (2003).CrossRefGoogle Scholar
49.Tanaka, K.: Mechanisms of photodarkening in amorphous chalcogenides. J. Non-Cryst. Solids 5960, 925 (1983).CrossRefGoogle Scholar
50.Golovchak, R., Shpotyuk, O., Kozdras, A., Bureau, B., Vlcek, M., Ganjoo, A., and Jain, H.: Atomistic model of physical ageing in Se-rich As–Se glasses. Philos. Mag. 87(28), 4323 (2007).CrossRefGoogle Scholar
51.Bureau, B., Troles, J., LeFloch, M., Smektala, F., Silly, G., and Lucas, J.: Solid state 77Se NMR investigations on arsenic-selenium glasses and crystals. Solid State Sci. 5, 219 (2003).CrossRefGoogle Scholar
52.Golovchak, R., Shpotyuk, O., Kozdras, A., Vlcek, M., Bureau, B., Kovalskiy, A., and Jain, H.: Long-term physical ageing in As–Se glasses with short chalcogen chains. J. Phys. Condens. Matter. 20, 245101 (2008).CrossRefGoogle Scholar
53.Golovchak, R., Jain, H., Shpotyuk, O., Kozdras, A., Saiter, A., and Saiter, J-M.: Experimental verification of the reversibility window concept in binary As-Se glasses subjected to a long-term physical aging. Phys. Rev. B 78, 014202 (2008).CrossRefGoogle Scholar