Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T21:44:19.389Z Has data issue: false hasContentIssue false

Light manipulation in a marine diatom

Published online by Cambridge University Press:  31 January 2011

Joseph Noyes
Affiliation:
School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
Manfred Sumper
Affiliation:
Lehrstuhl Biochemie I, Universität Regensburg, 93053 Regensburg, Germany
Pete Vukusic*
Affiliation:
School of Physics, University of Exeter, Exeter EX4 4QL, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Diatoms are well known for the intricately patterned nanostructure of their silica-based cell walls. To date, the optical properties of diatom cell-wall ultrastructures have largely gone uncharacterized experimentally. Here we report the results of a detailed experimental investigation of the way in which light interacts with the ultrastructure of a representative centric diatom species, Coscinodiscus wailesii. Light interaction both with individual valves and whole bivalves of the diatom C. wailesii was measured. Significant sixfold symmetric diffraction through the valve ultrastructure was observed in transmission and quantified to efficiencies that were found to be strongly wavelength dependent; approximately 80% for red, 30% for green, and 20% for blue light. While these results may potentially offer insight into the role of periodic nanostructure in diatom selection, they are also important for consideration in the design of biomimetic optics-based diatom applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Round, F.E., Crawford, R.M., Mann, D.G.: The Diatoms: Biology and Morphology of the Genera Cambridge University Press Cambridge, UK 1990Google Scholar
2Sanchez, C., Arribart, H., Guille, M.M.G.: Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277 2005CrossRefGoogle ScholarPubMed
3Lopez, P.J., Descles, J., Allen, A.E., Bowler, C.: Prospects in diatom research. Curr. Opin. Biotechnol. 16, 180 2005CrossRefGoogle ScholarPubMed
4Parkinson, J., Gordon, R.: Beyond micromachining: The potential of diatoms. Trends Biotechnol. 17, 190 1999CrossRefGoogle ScholarPubMed
5Liu, S.H., Jeffryes, C., Rorrer, G.L., Chang, C.H., Jiao, J., Gutu, T.: Blue luminescent biogenic silicon-germanium oxide nanocomposites in Biological and Bio-Inspired Materials and Devices, edited by K.H. Sandhage, S. Yang, T. Douglas, A.R. Parker, and E. DiMasi (Mater. Res. Soc. Symp. Proc. 873E, Warrendale, PA, 2005), pp. K1.4.1–K1.4.6,CrossRefGoogle Scholar
6Kusari, U., Bao, Z., Cai, Y., Ahmad, G., Sandhage, K.H., Sneddon, L.G.: Formation of nanostructured, nanocrystalline boron nitride microparticles with diatom-derived 3-D shapes. Chem. Commun. 1177 2007CrossRefGoogle ScholarPubMed
7Bao, Z., Weatherspoon, M.R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M., Ahmad, G., Dickerson, M.B., Church, B.C., Kang, Z., Abernathy, H.W., Summers, C.J., Liu, M., Sandhage, K.H.: Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(8), 172 2007CrossRefGoogle ScholarPubMed
8De Stefano, L., Lamberti, A., Rotiroti, L., De Stefano, M.: Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. Acta Biomater. 4, 126 2008CrossRefGoogle ScholarPubMed
9Naik, R.R., Stone, M.O.: Integrating biomimetics. Mater. Today 8, 18 2005CrossRefGoogle Scholar
10Losic, D., Triani, G., Evans, P.J., Atanacio, A., Mitchell, J.G., Voelcker, N.H.: Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. J. Mater. Chem. 16, 4029 2006CrossRefGoogle Scholar
11Sumper, M., Brunner, E.: Learning from diatoms: Nature’s tools for the production of nanostructured silica. Adv. Funct. Mater. 16, 17 2006CrossRefGoogle Scholar
12Sumper, M.: A phase separation model for the nanopatterning of diatom biosilica. Science 295, 2430 2002CrossRefGoogle ScholarPubMed
13Srinivasarao, M.: Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935 1999CrossRefGoogle ScholarPubMed
14Vukusic, P., Sambles, J.R.: Photonic structures in biology. Nature 424, 852 2003CrossRefGoogle ScholarPubMed
15Systems Structural Colors in Biological Principles and Applications edited by S. Kinoshita and S. Yoshioka Osaka University Press Osaka 2005Google Scholar
16Gale, M.: Diffraction, beauty and commerce. Phys. World 2, 24 1989CrossRefGoogle Scholar
17Vukusic, P.: Natural photonics. Phys. World 17, 35 2004CrossRefGoogle Scholar
18Hutley, M.C.: Diffraction Gratings Academic Press New York 1982Google Scholar
19Fuhrmann, T., Landwehr, S., Rharbi-Kucki, M. El, Sumper, M.: Diatoms as living photonic crystals. Appl. Phys. B 78, 257 2004CrossRefGoogle Scholar
20Dubinsky, Z., Falkowski, P.G., Wyman, K.: Light harvesting and utilization by phytoplankton. Plant Cell Physiol. 27, 1335 1986CrossRefGoogle Scholar
21Vukusic, P., Sambles, J.R., Lawrence, C.R., Wootton, R.J.: Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. London, Ser. B 266, 1403 1999CrossRefGoogle Scholar
22Hooper, I., Vukusic, P.: Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea. Opt. Express 14, 4891 2006CrossRefGoogle ScholarPubMed
23Noyes, J.A., Vukusic, P., Hooper, I.R.: Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. Opt. Express 15, 4351 2007CrossRefGoogle ScholarPubMed
24Abbé, E.: Contributions to the understanding of microscope theory. Schultzes Arc. f. Mikr. Anat. 9, 413 1873Google Scholar
25Wilson, S.D.: A reflection-diffraction microscope for observing diatoms in colour. Appl. Opt. 5(10), 1683 1966CrossRefGoogle Scholar
26Sterrenburg, F.A.S.: Studies on the genera Gyrosigma and Pleurosigma. Light microscopical criteria for taxonomy. Diatom. Res. 6, 367 1991CrossRefGoogle Scholar
27Kittel, C.: Introduction to Solid State Physics John Wiley & Sons London 1995Google Scholar
28Falciatore, A., Bowler, C.: Revealing the molecular secrets of marine diatoms. Annu. Rev. Plant Biol. 53, 109 2002CrossRefGoogle ScholarPubMed
29Foster, W., Smyth, R.D.: Light antennas in phototactic algae. Microbiol. Rev. 44, 572 1980CrossRefGoogle ScholarPubMed
30Horton, P., Ruben, A.V., Walters, R.G.: Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655 1996CrossRefGoogle ScholarPubMed
31Furukawa, T., Watanabe, M., Shihira-Ishikawa, I.: Green- and blue-light-mediated chloroplast migration in the centric diatom (Pleurosira laevis) provides insight into their adapted survival strategy in conditions of variable light. Protoplasma 203, 214 1998CrossRefGoogle Scholar
32Akira, O., Kazuhiko, I., Kuninaho, T.: The standing stock and sinking rate of the large diatom Coscinodiscus wailesii causing Nori (Porphyra) discoloration. Bull. Soc. Sea Water Science, Japan 60, 253 2006Google Scholar
33Grossman, A.R., Bhaya, D., Apt, K.E., Kehoe, D.M.: Light-harvesting complexes in oxygenic photosynthesis. Diversity, control, and evolution. Annu. Rev. Genet. 29, 231 1995CrossRefGoogle ScholarPubMed
34Neumüller, M., Cunningham, A., Mckee, D.: Assessment of a microscopic photobleaching technique for measuring the spectral absorption efficiency of individual phytoplankton cells. J. Plankton Res. 24, 741 2002CrossRefGoogle Scholar
35Tilman, D., Kilham, P.: Sinking in freshwater phytoplankton: Some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanogr. 21, 409 1976Google Scholar
36Hale, M.S., Mitchell, J.G.: Functional morphology of diatom frustule microstructures: Hydrodynamic control of Brownian particle diffusion and advection. Aquat. Microb. Ecol. 24, 287 2001CrossRefGoogle Scholar
37Hamm, C.E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K., Smetacek, V.: Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841 2003CrossRefGoogle ScholarPubMed
38Parker, A.R., Townley, H.E.: Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2, 347 2007CrossRefGoogle ScholarPubMed