Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T02:34:34.741Z Has data issue: false hasContentIssue false

Library Preparation using an Aspirating-Dispensing Ink-Jet Printer for Combinatorial Studies in Ceramics

Published online by Cambridge University Press:  03 March 2011

Jian Wang
Affiliation:
Department of Materials, Queen Mary, University of London, London E1 4NS, United Kingdom
Julian R.G. Evans*
Affiliation:
Department of Materials, Queen Mary, University of London, London E1 4NS, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper describes an aspirating-dispensing ink-jet printer embedded in a combinatorial robot for high throughput studies in ceramics; LUSI, the London University Search Instrument. The process of reformatting well-plates from source inks and printing ceramic samples is described. Precautions against evaporation, sedimentation of colloidal suspensions, and segregation of mixtures during drying are taken to convert compositions specified in a spreadsheet into the form of ∼1 mm radius drops. It is concluded that when these precautions are taken, commercially available powders can be combinatorially mixed in LUSI to produce samples of2.4 mg to within 1–3 wt% accuracy.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1Lee, A. and Breitenbucher, J.G.: The impact of combinatorial chemistry on drug discovery. Curr. Opin. Drug Discovery Delivery 6, 494 (2003).Google ScholarPubMed
2Jandeleit, B., Schaefer, D.J., Powers, T.S., Turner, H.W. and Weinberg, W.H.: Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. Engl. 38, 2495 (1999).3.0.CO;2-#>CrossRefGoogle ScholarPubMed
3Hall, S.R. and Harrison, M.R.: The search for new superconductors. Chem. Br. 30, 739 (1994).Google Scholar
4Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J.H., Haushalter, R.G., McFarland, E.W., Poojary, D.M., Reaves, C.M., Weinberg, W.H. and Wu, X.: X-ray powder structure of Sr2CeO4: A new luminescent material discovered by combinatorial chemistry. J. Mol. Struct. 470, 229 (1998).CrossRefGoogle Scholar
5Hanak, J.J.: The ‘multiple sample concept’ in materials research; synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964 (1970).CrossRefGoogle Scholar
6Xiang, X.D., Sun, X.D., Briceno, G., Lou, Y.L., Wang, K.A., Chang, H.Y., Wallacefreedman, W.G., Chen, S.W. and Schultz, P.G.: A combinatorial approach to materials discovery. Science 268, 1738 (1995).CrossRefGoogle ScholarPubMed
7Wang, J.S., Yoo, Y., Gao, C., Takeuchi, I., Sun, X.D., Chang, H.Y., Xiang, X.D. and Schultz, P.G.: Identification of a blue photoluminescent composite material from a combinatorial library. Science 279, 1712 (1998).CrossRefGoogle ScholarPubMed
8Chang, H., Gao, C., Takeuchi, I., Yoo, Y., Wang, J., Schultz, P.G., Xiang, X.D., Sharma, R.P., Downes, M. and Venkatesan, T.: Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin film libraries for microwave applications. Appl. Phys. Lett. 72, 2185 (1998).CrossRefGoogle Scholar
9Strasser, P., Fan, Q., Devenney, M., Weinberg, W.H., Liu, P. and Norskov, J.K.: High throughput experimental and theoretical predictive screening of materials- a comparative study of search strategies for new fuel cell anode catalysts. J. Phys. Chem. B 107, 11013 (2003).CrossRefGoogle Scholar
10Cavicchi, R.E., Semancik, S., DiMeo, F. and Taylor, C.J.: Use of microhotplates in the controlled growth and characterization of metal oxides for chemical sensing. J. Electroceram. 9, 155 (2003).CrossRefGoogle Scholar
11Okamura, S., Takeuchi, R. and Shiosaki, T.: Fabrication of ferroelectric Pb(ZrTi)O3 thin films with various Zr/Ti ratios by ink-jet printing. Jpn. J. Appl. Phys. 41, 6714 (2002).CrossRefGoogle Scholar
12Lemmo, A.V., Fisher, J.T., Geysen, H.M. and Rose, D.J.: Characterization of an inkjet chemical microdispenser for combinatorial library synthesis. Anal. Chem. 69, 543 (1997).CrossRefGoogle Scholar
13Sun, X.D., Wang, K.A. and Yoo, Y.: Solution-phase synthesis of luminescent materials libraries. Adv. Mater. 9, 1046 (1997).CrossRefGoogle Scholar
14Reichenbach, H.M. and McGinn, P.J.: Combinatorial solution synthesis and characterization of complex oxide catalyst powders based on the LaMO3 system. Appl. Catal. A-Gen. 244, 101 (2003).CrossRefGoogle Scholar
15Zhang, H.Q. and Hoogenboom, R.: Combinatorial and high throughput approaches in polymer science. Meas. Sci. Technol. 16, 203 (2005).CrossRefGoogle Scholar
16Uhland, S.A., Holman, R.K., Cima, M.J., Sachs, E. and Enokido, Y.: New process and materials developments in 3-dimensional printing 3DP, in Solid Freeform and Additive Fabrication, edited by Dimos, D., Danforth, S.C., and Cima, M.J. (Mater. Res. Soc. Symp. Proc. 542, Warrendale, PA, 1999), p. 153.Google Scholar
17Zhao, X.L., Evans, J.R.G., Edirisinghe, M.J. and Song, J.H.: Direct ink-jet printing of vertical walls. J. Am. Ceram. Soc. 85, 2113 (2002).CrossRefGoogle Scholar
18Mott, M. and Evans, J.R.G.: Zirconia/alumina functionally graded material made by ceramic ink jet printing. Mater. Sci. Eng. A, Struct. 271, 344 (1999).CrossRefGoogle Scholar
19Evans, J.R.G., Edirisinghe, M.J., Coveney, P.V. and Eames, J.: Combinatorial searches of inorganic materials using the ink jet printer: science, philosophy and technology. J. Eur. Ceram. Soc. 21, 2291 (2001).CrossRefGoogle Scholar
20Mohebi, M.M. and Evans, J.R.G.: A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J. Comb. Chem. 4, 267 (2002).CrossRefGoogle ScholarPubMed
21Mohebi, M.M. and Evans, J.R.G.: Combinatorial ink-jet printer for ceramics: Calibration. J. Am. Ceram. Soc. 86, 1654 (2003).CrossRefGoogle Scholar
22Hulliger, J., Awan, M.A. and Trusch, B.: Chemical diversity in view of property generation by a new combinatorial approach. Z. Anorg. Allg. Chem. 631, 1255 (2005).CrossRefGoogle Scholar
23 System Operating Manual, Version 1.0, Prosys Gantry System (Cartesian Technologies, Huntingdon, Cambridge, U.K., 2000).Google Scholar
24Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. and Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756 (2000).CrossRefGoogle Scholar
25Adachi, E., Dimitrov, A.S. and Nagayama, K.: Stripe patterns formed on a glass surface during droplet evaporation. Langmuir 11, 1057 (1995).CrossRefGoogle Scholar
26Ciampi, E., Goerke, U., Keddie, J.L. and McDonald, P.J.: Lateral transport of water during drying of alkyd emulsions. Langmuir 16, 1057 (2000).CrossRefGoogle Scholar
27Routh, A.F. and Russel, W.B.: Horizontal drying fronts during solvent evaporation from latex films. AIChE J. 44, 2088 (1998).CrossRefGoogle Scholar
28Haw, M.D., Gillie, M. and Poon, W.C.K.: Effects of phase behaviour on the drying of colloidal suspensions. Langmuir 18, 1626 (2002).CrossRefGoogle Scholar
29Hu, H. and Larson, R.G.: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 3972 (2005).CrossRefGoogle Scholar