Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:56:07.206Z Has data issue: false hasContentIssue false

Leakage current of Al- or Nb-doped Ba0.5Sr0.5TiO3 thin films by rf magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

Tae-Gyoung In
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 790–784 Pohang, South Korea
Sunggi Baik
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 790–784 Pohang, South Korea
Sangsub Kim
Affiliation:
Department of Materials Science and Metallurgical Engineering, Sunchon National University, 540–742, Sunchon, South Korea
Get access

Abstract

The effects of Al and Nb doping on the leakage current behaviors were studied for the Ba0.5Sr0.5TiO3 (BST) thin films deposited on Pt/Ti/SiO2/Si(100) substrate by rf magnetron sputtering. Al and Nb were selected as acceptor and donor dopants, respectively, because they have been known to replace Ti-sites of the BST perovskite. The BST thin films prepared in situ at elevated temperatures showed relatively high leakage current density and low breakdown voltage. However, the BST thin films deposited at room temperature and annealed subsequently in air showed improved electrical properties. In particular, the leakage current density of the Al-doped BST thin film was measured to be around 10−8 A/cm2 at 125 kV/cm, which is much lower than those of the undoped or Nb-doped thin films. The results suggest that the Schottky barriers at grain boundaries in the film interior could determine the leakage behavior in the BST thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Horikawa, T., Mikami, N., Ito, H., Ohno, Y., Makita, T., and Sato, K., IEEE Trans. Electron. E77–C, 385 (1994).Google Scholar
2.Qadri, S. B., Horwitz, J. S., Chrisey, D. B., Auyeung, R. C. Y., and Grabowski, K. S., Appl. Phys. Lett. 66, 1605 (1995).CrossRefGoogle Scholar
3.Kim, T. S., Oh, M. H., and Kim, C. H., Thin Solid Films 254, 273 (1995).CrossRefGoogle Scholar
4.Tahan, D. M., Safari, A., and Klein, L. C., J. Am. Ceram. Soc. 79, 1593 (1996).CrossRefGoogle Scholar
5.Kimura, M. and Ohmi, T., Jpn. J. Appl. Phys. 35, 1478 (1996).Google Scholar
6.Bhattacharya, P., Komeda, T., Park, K. H., and Nishioka, Y., Jpn. J. Appl. Phys. 32, 4103 (1993).CrossRefGoogle Scholar
7.Bhattacharya, P., Park, K. H., and Nishioka, Y., Jpn. J. Appl. Phys. 33, 5231 (1994).Google Scholar
8.Sedlar, M. and Sayer, M., Integrated Ferroelectrics 10, 113 (1995).Google Scholar
9.Hwang, C. S., Park, S. O., Cho, H. J., Kang, C. S., Kang, H. K., Lee, S. I., and Lee, M. Y., Appl. Phys. Lett. 67, 2819 (1995).CrossRefGoogle Scholar
10.Kim, Y. T. and Lee, C. W., Jpn. J. Appl. Phys. 35, 6153 (1996).Google Scholar
11.Smith, D. M., Harmer, M. P., and Peng, P., J. Am. Ceram. Soc. 72, 2276 (1989).CrossRefGoogle Scholar
12.Wu, T. B. and Lin, J. N., J. Am. Ceram. Soc. 77, 759 (1994).CrossRefGoogle Scholar
13.Peng, C. J. and Krupanidhi, S. B., J. Mater Res. 10, 708 (1995).Google Scholar
14.Paek, S. H., Won, J., Lee, K. S., Choi, J. S., and Park, C. S., Jpn. J. Appl. Phys. 35, 5757 (1996).CrossRefGoogle Scholar
15.Fukuda, Y., Aoki, K., Numata, K., Aoyama, S., and Nishimura, A., Integrated Ferroelectrics 11, 121 (1995).Google Scholar
16.Scott, J. F., Azuma, M., Fujii, E., Otsuki, T., Kano, G., Scott, M. C., Paz de Araujo, C. A., McMillan, L. D., and Roberts, T., in Proc. 8th Int. Symp. On Applications of Ferroelectrics (1992), p. 356.Google Scholar
17.Hennings, D., Klee, M., and Waser, R., Adv. Mater. 3, 334 (1991).CrossRefGoogle Scholar
18.Vollman, M. and Waser, R., J. Am. Ceram. Soc. 77, 235 (1994).Google Scholar
19.Chiang, Y. M. and Takagi, T., J. Am. Ceram. Soc. 73, 3278 (1990).CrossRefGoogle Scholar
20.Ho, I. C. and Fu, S. L., J. Am. Ceram. Soc. 75, 728 (1992).CrossRefGoogle Scholar
21.Huybrechts, B., Ishizaki, K., and Takata, M., J. Am. Ceram. Soc. 75, 722 (1992).Google Scholar
22.Park, S. O., Hwang, C. S., Cho, H. J., Kang, C. S., Kang, H. K., Lee, S. I., and Lee, M. Y., Jpn. J. Appl. Phys. 35, 1548 (1996).CrossRefGoogle Scholar
23.Kao, K. C. and Hwang, W., Electrical Transport in Solids (Pergamon Press, Oxford, 1981), p. 86.Google Scholar
24.Tu, K. N., Mayer, J.W., and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan Publishers, New York, 1992), p. 236.Google Scholar