Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T06:32:16.017Z Has data issue: false hasContentIssue false

Lattice site for transition and rare-earth impurities in LiNbO3 by ion-beam methods

Published online by Cambridge University Press:  29 June 2016

L. Rebouta
Affiliation:
Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa, Portugal
J. C. Soares
Affiliation:
Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa, Portugal
M. F. da Silva
Affiliation:
Departamento de Física, Institute de Ciências e Engenharia Nucleares LNETI, 2685 Sacavém, Portugal
J. A. Sanz-García
Affiliation:
Departamento de Física Aplicada, C-IV, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
E. Dieguez
Affiliation:
Departamento de Física Aplicada, C-IV, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
F. Agulló-López
Affiliation:
Departamento de Física Aplicada, C-IV, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Get access

Abstract

The lattice location of several transition metal (Hf, Ta) and rare-earth (Nd, Eu) impurities has been investigated in LiNbO3 by ion-beam channeling methods, including Rutherford backscattering and the 7Li(p, α)4 He nuclear reaction. From the detailed analysis of the angular scans near crystallographic axes and planes and the comparison between the two methods, it has been concluded that Hf lies at a Li site, but Ta at a Nb site, whereas Eu and Nd present double occupancy. By using additional results on other impurities, a wider picture of location behavior is described and possible physical mechanisms are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Electrooptic and Photorefractive Materials, edited by Günter, P. (Springer, Berlin, 1986), pp. 132195.Google Scholar
2.Thylen, L., J. Lightwave Technol. 6, 847 (1988).Google Scholar
3.Günter, P., Phys. Rep. 93, 199 (1982).CrossRefGoogle Scholar
4.Agulló-López, F., Ferroelectrics 91, 227 (1989).Google Scholar
5.Agulló-López, F. and Cabrera, J. M., in “Properties of LiNbO3” Datareviews Series N°5 INSPEC, London (1989).Google Scholar
6.Senegas, J., Joo, G. T., and Ravez, J., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier, Amsterdam, 1987), pp. 16771686.Google Scholar
7.Corradi, G., Söthe, H., Spaeth, J. M., and Polgar, K., J. Phys. Cond. Matter 2, 6603 (1990).CrossRefGoogle Scholar
8.Zaldo, C., Agulló-López, F., García, J., Marielli, A., and Mobilio, S., Solid State Commun. 71, 243 (1989).Google Scholar
9.Catlow, C. R. A., Donnerberg, H., Schirmer, O. F., Tomlinson, S. M., and Cole, M., Proc. 6th Europhysical Topical Conference on Lattice Defects in Ionic Materials, Groningen, 09 1990 (to be published).Google Scholar
10.Prieto, C., Zaldo, C., Fessler, P., Dexpert, H., Sanz-García, J. A., and Dieguez, E., Phys. Rev. B 43, 2594 (1991).CrossRefGoogle Scholar
11.Zaldo, C., Prieto, C., and Dexpert, H., J. Phys. Cond. Matter (in press).Google Scholar
12.Rebouta, L., Soares, J. C., da Silva, M.F., Sanz-García, J.A., Dieguez, E., and Agulló-López, F., Appl. Phys. Lett. 55, 120 (1989).Google Scholar
13.Rebouta, L., Soares, J.C., da Silva, M.F., Sanz-García, J.A., Dieguez, E., and Agulló-López, F., Nucl. Instrum. Methods B45, 495 (1990).Google Scholar
14.Rebouta, L., Soares, J.C., da Silva, M.F., Sanz-García, J.A., Dieguez, E., and Agulló-López, F., Nucl. Instrum. Methods B50, 428 (1990).CrossRefGoogle Scholar
15.Gemmell, D.S., Rev. Mod. Phys. 46, 129 (1974).Google Scholar
16.Moliere, G., Z. Naturforsch. 2a, 133 (1947).CrossRefGoogle Scholar
17.Lifante, G., Cussó, F., Jaque, F., Sanz-García, J.A., Monteil, A., Varrel, B., Boulon, G., and García-Solé, J., Chem. Phys. Lett. 176, 482 (1991).Google Scholar
18.Abrahams, S. C. and Marsh, P., Acta Crystallogr. Sect. B, 42, 6 (1986).Google Scholar
19.Huixian, F., Jinke, W., Huafu, W., Shiynig, H., and Yunxia, X., J. Phys. Chem. Solids 51, 397 (1990).Google Scholar
20.Baker, A., Donnerberg, H., Schirmer, O. F., and Feng, X. Q., J. Phys. Cond. Matter 2, 6865 (1990).Google Scholar
21.Donnerberg, H., Tomlinson, S.M., Catlow, C.R.A., and Schirmer, O.F., Proc. 6th Europhysical Topical Conference on Lattice Defects in Ionic Materials, Groningen, 1990 (to be published).Google Scholar
22.Rebouta, L., Soares, J.C., da Silva, M.F., Hage-Ali, M., Stoquert, J.P., Siffert, P., Sanz-García, J. A., Dieguez, E., and Agulló-López, F., Eurphys. Lett. 14, 557 (1991).Google Scholar
23.Kovacs, L., Rebouta, L., Soares, J. C., and da Silva, M. F., Radiat. Eff. Def. Sol. (in press).Google Scholar
24.Kovacs, L., Rebouta, L., Soares, J. C., da Silva, M. F., Hage-Ali, M., Stoquert, J.P., Siffert, P., Zaldo, C., Szaller, Zs., and Polgar, K., Mater. Sci. Eng. B (in press).Google Scholar
25.Rebouta, L., Soares, J.C., da Silva, M.F., Sanz-García, J.A., Dieguez, E., and Agulló-López, F., Nucl. Instrum. Methods (to be published).Google Scholar