Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:35:11.549Z Has data issue: false hasContentIssue false

Lateral water structure connects metal oxide nanoparticle faces

Published online by Cambridge University Press:  23 January 2019

Piotr Zarzycki*
Affiliation:
Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Christopher A. Colla
Affiliation:
Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Benjamin Gilbert
Affiliation:
Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Kevin M. Rosso
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

When a metal oxide surface is immersed in aqueous solution, it has the ability to bind, orient, and order interfacial water, affecting both chemical and physical interactions with the surface. Structured interfacial water thus possesses time-averaged, spatially varying polarization charge and potential that are comparable to those arising due to ion accumulation. It is well established that interfacial water structure propagates from the surface into bulk solution. Here, we show that interfacial water structure also propagates laterally, with important consequences. The constant pH molecular dynamics was used to impose a pH difference between opposite faces of a model goethite (α-FeOOH) nanoparticle and quantify water polarization charge on intervening faces. We find that the structure of water on one face is strongly affected by the structure on nearby surfaces, revealing the importance of long-range lateral hydrogen bonding networks with implications for particle aggregation, oriented attachment, and processes such as dissolution and growth.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

White, W.M.: Geochemistry (Wiley, Chichester, West Sussex, UK, 2013).Google Scholar
Lyklema, J.: Fundamentals of Interface and Colloid Science: Solid-Liquid Iterfaces (Elsevier, San Diego, 1995).Google Scholar
Stumm, W. and Morgan, J.J.: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, New York, 1996).Google Scholar
Brown, G.E., Henrich, V.E., Casey, W.H., Clark, D.L., Eggleston, C., Felmy, A., Goodman, D.W., Grätzel, M., Maciel, G., McCarthy, M.I., Nealson, K.H., Sverjensky, D.A., Toney, M.F., and Zachara, J.M.: Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77 (1999).CrossRefGoogle ScholarPubMed
Brown, G.E.: How minerals react with water. Science 294, 67 (2001).CrossRefGoogle ScholarPubMed
Brown, G.E. and Calas, G.: Mineral-aqueous solution interfaces and their impact on the environment. Geochem. Perspect. 1, 483 (2012).CrossRefGoogle Scholar
Bousse, L. and Meindl, J.D.: Geochemical Processes at Mineral Surfaces (American Chemical Society, Washington, DC, 1987); pp. 7998.CrossRefGoogle Scholar
Bowden, J.W., Nagarajah, S., Barrow, N.J., Posner, A.M., and Quirk, J.P.: Describing the adsorption of phosphate, citrate and selenite on a variable-charge mineral surface. Soil Res. 18, 49 (1980).CrossRefGoogle Scholar
Charmas, R., Piasecki, W., and Rudzinski, W.: Four layer complexation model for ion adsorption at electrolyte/oxide interface: Theoretical foundations. Langmuir 11, 3199 (1995).CrossRefGoogle Scholar
van Riemsdijk, W.H., de Wit, J.C.M., Koopal, L.K., and Bolt, G.H.: Metal ion adsorption on heterogeneous surfaces: Adsorption models. J. Colloid Interface Sci. 116, 511 (1987).CrossRefGoogle Scholar
Davis, J.A., James, R.O., and Leckie, J.O.: Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 63, 480 (1978).CrossRefGoogle Scholar
Yates, D.E., Levine, S., and Healy, T.W.: Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc., Faraday Trans. 1 70, 1807 (1974).CrossRefGoogle Scholar
Björneholm, O., Hansen, M.H., Hodgson, A., Liu, L-M., Limmer, D.T., Michaelides, A., Pedevilla, P., Rossmeisl, J., Shen, H., Tocci, G., Tyrode, E., Walz, M-M., Werner, J., and Bluhm, H.: Water at interfaces. Chem. Rev. 116, 7698 (2016).CrossRefGoogle Scholar
Bockris, J.O. and Khan, S.U.M.: Surface Electrochemistry: A Molecular Level Approach (Springer, New York, 1993).CrossRefGoogle Scholar
Raicu, V. and Feldman, Y.: Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications (Oxford University Press, Oxford, UK, 2015).CrossRefGoogle Scholar
Toney, M.F., Howard, J.N., Richer, J., Borges, G.L., Gordon, J.G., Melroy, O.R., Wiesler, D.G., Yee, D., and Sorensen, L.B.: Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368, 444 (1994).CrossRefGoogle Scholar
Shen, Y.R. and Ostroverkhov, V.: Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106, 1140 (2006).CrossRefGoogle ScholarPubMed
Henderson, M.A.: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).CrossRefGoogle Scholar
Carrasco, J., Hodgson, A., and Michaelides, A.: A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667 (2012).CrossRefGoogle Scholar
Fenter, P. and Sturchio, N.C.: Mineral–water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 77, 171 (2004).CrossRefGoogle Scholar
Israelachvili, J.N. and Pashley, R.M.: Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306, 249 (1983).CrossRefGoogle Scholar
Spohr, E.: Molecular simulation of the electrochemical double layer. Electrochim. Acta 44, 1697 (1999).CrossRefGoogle Scholar
Wieckowski, A.: Interfacial Electrochemistry: Theory: Experiment, and Applications (CRC Press, New York, 1999).Google Scholar
Wang, J., Kalinichev, A.G., and Kirkpatrick, R.J.: Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochim. Cosmochim. Acta 70, 562 (2006).CrossRefGoogle Scholar
Lee, S.H. and Rossky, P.J.: A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—A molecular dynamics simulation study. J. Chem. Phys. 100, 3334 (1994).CrossRefGoogle Scholar
Philpott, M.R. and Glosli, J.N.: Electric potential near a charged metal surface in contact with aqueous electrolyte. J. Electroanal. Chem. 409, 65 (1996).CrossRefGoogle Scholar
Zarzycki, P., Kerisit, S., and Rosso, K.M.: Molecular dynamics study of the electrical double layer at silver chloride- electrolyte interfaces. J. Phys. Chem. C 114, 8905 (2010).CrossRefGoogle Scholar
Zarzycki, P. and Rosso, K.M.: Molecular dynamics simulation of the AgCl/electrolyte interfacial capacity. J. Phys. Chem. C 114, 10019 (2010).CrossRefGoogle Scholar
Zarzycki, P., Kerisit, S., and Rosso, K.M.: Molecular dynamics study of Fe(II) adsorption, electron exchange, and mobility at goethite (α-FeOOH) surfaces. J. Phys. Chem. C 119, 3111 (2015).CrossRefGoogle Scholar
Zarzycki, P. and Rosso, K.M.: Surface charge effects on Fe(II) sorption and oxidation at (110) goethite surfaces. J. Phys. Chem. C 122, 10059 (2018).CrossRefGoogle Scholar
Mongan, J., Case, D.A., and McCammon, J.A.: Constant pH molecular dynamics in generalized born implicit solvent. J. Comput. Chem. 25, 2038 (2004).CrossRefGoogle ScholarPubMed
Zarzycki, P., Smith, D.M., and Rosso, K.M.: Proton dynamics on goethite nanoparticles and coupling to electron transport. J. Chem. Theory Comput. 11, 1715 (2015).CrossRefGoogle ScholarPubMed
Borkovec, M.: Origin of 1-pK and 2-pK models for ionizable water–solid interfaces. Langmuir 13, 2608 (1997).CrossRefGoogle Scholar
Borkovec, M., Daicic, J., and Koper, G.J.M.: Ionization properties of interfaces and linear polyelectrolytes: A discrete charge Ising model. Phys. A 298, 1 (2001).CrossRefGoogle Scholar
Rustad, J.R., Wasserman, E., Felmy, A.R., and Wilke, C.: Molecular dynamics study of proton binding to silica surfaces. J. Colloid Interface Sci. 198, 119 (1998).CrossRefGoogle Scholar
Zarzycki, P.: Computational study of proton binding at the rutile/electrolyte solution interface. J. Phys. Chem. C 111, 7692 (2007).CrossRefGoogle Scholar
Zarzycki, P.: Comparison of the Monte Carlo estimation of surface electrostatic potential at the hematite (0001)/electrolyte interface with the experiment. Appl. Surf. Sci. 253, 7604 (2007).CrossRefGoogle Scholar
Zarzycki, P. and Rosso, K.M.: Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study. J. Colloid Interface Sci. 341, 143 (2010).CrossRefGoogle ScholarPubMed
Zarzycki, P., Chatman, S., Preočanin, T., and Rosso, K.M.: Electrostatic potential of specific mineral faces. Langmuir 27, 7986 (2011).CrossRefGoogle ScholarPubMed
Rustad, J.R. and Felmy, A.R.: The influence of edge sites on the development of surface charge on goethite nanoparticles: A molecular dynamics investigation. Geochim. Cosmochim. Acta 69, 1405 (2005).CrossRefGoogle Scholar
Zarzycki, P.: Monte Carlo simulation of the electrical differential capacitance of a double electrical layer formed at the heterogeneous metal oxide/electrolyte interface. J. Colloid Interface Sci. 297, 204 (2006).CrossRefGoogle ScholarPubMed
Zarzycki, P.: Monte Carlo modeling of ion adsorption at the energetically heterogeneous metal oxide/electrolyte interface: Micro- and macroscopic correlations between adsorption energies. J. Colloid Interface Sci. 306, 328 (2007).CrossRefGoogle ScholarPubMed
Zarzycki, P.: Monte Carlo study of the topographic effects on the proton binding at the energetically heterogeneous metal oxide/electrolyte interface. Langmuir 22, 11234 (2006).CrossRefGoogle ScholarPubMed
Zarzycki, P., Charmas, R., and Szabelski, P.: Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach. J. Comput. Chem. 25, 704 (2004).CrossRefGoogle ScholarPubMed
Szabelski, P., Zarzycki, P., and Charmas, R.: A Monte Carlo study of proton adsorption at the heterogeneous oxide/electrolyte interface. Langmuir 20, 997 (2004).CrossRefGoogle ScholarPubMed
Frenkel, D. and Smit, B.: Understanding Molecular Simulations: From Algorithms to Applications (Academic Press, San Diego, 2002).Google Scholar
Swope, W.C., Andersen, H.C., Berens, P.H., and Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, 637 (1982).CrossRefGoogle Scholar
Andersen, H.C.: Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24 (1983).CrossRefGoogle Scholar
Handler, R.M., Frierdich, A.J., Johnson, C.M., Rosso, K.M., Beard, B.L., Wang, C., Latta, D.E., Neumann, A., Pasakarnis, T., Premaratne, W.A.P.J., and Scherer, M.M.: Fe(II)-catalyzed recrystallization of goethite revisited. Environ. Sci. Technol. 48, 11302 (2014).CrossRefGoogle ScholarPubMed
Venema, P., Hiemstra, T., Weidler, P.G., and van Riemsdijk, W.H.: Intrinsic proton affinity of reactive surface groups of metal (Hydr)oxides: Application to iron (Hydr)oxides. J. Colloid Interface Sci. 198, 282 (1998).CrossRefGoogle Scholar
Walker, D.W. and Dongarra, J.J.: MPI: A standard message passing interface. Supercomputer 12, 56 (1996).Google Scholar
Gropp, W., Lusk, E., Doss, N., and Skjellum, A.: A high-performance, portable implementation of the MPI message passing interface standard. Parallel Comput. 22, 789 (1996).CrossRefGoogle Scholar
Spagnoli, D., Gilbert, B., Waychunas, G.A., and Banfield, J.F.: Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles. Geochim. Cosmochim. Acta 73, 4023 (2009).CrossRefGoogle Scholar
De Yoreo, J.J., Pupa, U.P., Nico, A.J., Lee Penn, R., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Marc Michel, F., Meldrum, F.C., Cölfen, H., and Dove, P.M.: Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).CrossRefGoogle ScholarPubMed
Zhang, X., He, Y., Sushko, M.L., Liu, J., Luo, L., De Yoreo, J.J., Mao, S.X., Wang, C., and Rosso, K.M.: Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 434 (2017).CrossRefGoogle Scholar
Zhang, X., Shen, Z., Liu, J., Kerisit, S.N., Bowden, M.E., Sushko, M.L., De Yoreo, J.J., and Rosso, K.M.: Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 8, 835 (2017).CrossRefGoogle ScholarPubMed
Liu, Y., Zhang, Y., Wu, G., and Hu, J.: Coexistence of liquid and solid phases of Bmim-PF6 ionic liquid on mica surfaces at room temperature. J. Am. Chem. Soc. 128, 7456 (2006).CrossRefGoogle ScholarPubMed
Tamam, L., Ocko, B.M., Reichert, H., and Deutsch, M.: Checkerboard self-patterning of an ionic liquid film on mercury. Phys. Rev. Lett. 106, 197801 (2011).CrossRefGoogle ScholarPubMed
Merlet, C., Limmer, D.T., Salanne, M., van Roij, R., Madden, P.A., Chandler, D., and Rotenberg, B.: The electric double layer has a life of its own. J. Phys. Chem. C 118, 18291 (2014).CrossRefGoogle Scholar
Kornyshev, A.A. and Qiao, R.: Three-dimensional double layers. J. Phys. Chem. C 118, 18285 (2014).CrossRefGoogle Scholar
Valtiner, M., Banquy, X., Kristiansen, K., Greene, G.W., and Israelachvili, J.N.: The electrochemical surface forces apparatus: The effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions. Langmuir 28, 13080 (2012).CrossRefGoogle ScholarPubMed
Voukadinova, A., Valiskó, M., and Gillespie, D.: Assessing the accuracy of three classical density functional theories of the electrical double layer. Phys. Rev. E 98, 012116 (2018).CrossRefGoogle ScholarPubMed
Jiménez-Ángeles, F. and Lozada-Cassou, M.: A model macroion solution next to a charged wall: Overcharging, charge reversal, and charge inversion by macroions. J. Phys. Chem. B 108, 7286 (2004).CrossRefGoogle Scholar
Forsman, J.: A simple correlation-corrected Poisson−Boltzmann theory. J. Phys. Chem. B 108, 9236 (2004).CrossRefGoogle Scholar
Sushko, M.L. and Rosso, K.M.: The origin of facet selectivity and alignment in anatase TiO2 nanoparticles in electrolyte solutions: Implications for oriented attachment in metal oxides. Nanoscale 8, 19714 (2016).CrossRefGoogle ScholarPubMed
Shen, Z., Chun, J., Rosso, K.M., and Mundy, C.J.: Surface chemistry affects the efficacy of the hydration force between two ZnO$\left( {10\bar{1}\bar{0}} \right)$ surfaces. J. Phys. Chem. C 122, 12259 (2018).CrossRefGoogle Scholar
Yanina, S.V. and Rosso, K.M.: Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320, 218 (2008).CrossRefGoogle ScholarPubMed