Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T22:54:34.388Z Has data issue: false hasContentIssue false

Large negative thermal expansion and phase transition in (Pb1−xCax)TiO3 (0.30 ≤ x ≤ 0.45) ceramics

Published online by Cambridge University Press:  03 March 2011

Amreesh Chandra
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
Dhananjai Pandey*
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
M.D. Mathews
Affiliation:
Solid State Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400005, India
A.K. Tyagi
Affiliation:
Solid State Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400005, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-temperature dilatometric studies on (Pb1−xCax)TiO3 (x = 0.35, 0.35, 0.40, 0.45) ferroelectric ceramics reveal negative thermal expansion for x ≤ 0.40. The negative thermal expansion coefficient for x = 0.30, as obtained by dilatometry and powder x-ray diffraction, were found to be −8.541 × 10−6 K−1 and −11 × 10−6 K−1, respectively, which are comparable to those of other well-known negative thermal expansion materials like ZrW2O8, NaZr2(PO4)3. Results of temperature-dependent x-ray diffraction studies are also presented to show that the large negative thermal expansion behavior for x = 0.30 persists in a very wide range of temperatures, 70–570 K. Ca2+ substitution reduces the value of the negative thermal expansion coefficient of pure PbTiO3 crystal, but it enables the preparation of strong sintered ceramic bodies. The negative thermal expansion behavior is shown to disappear above the ferroelectric Curie point and is restricted to only the tetragonal compositions of (Pb1−xCax)TiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Roy, R., Agrawal, D.K. and Mckinstry, H.A.: Very low thermal expansion coefficient materials. Ann. Rev. Mater. Sci. 19, 59 (1989).CrossRefGoogle Scholar
2.Sleight, A.W.: Negative thermal expansion materials. Curr. Opin. Solid State Mater. Sci. 3, 128 (1998).CrossRefGoogle Scholar
3.Sigmund, O. and Torquato, S.: Composites with extremum thermal expansion coefficients. Appl. Phys. Lett. 69, 3203 (1996).CrossRefGoogle Scholar
4.Agrawal, D.K. and Roy, R.: Composite route to “zero” expansion ceramics. J. Mater. Sci. 20, 4617 (1985).CrossRefGoogle Scholar
5.Evans, J.S.O.: Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 3317 (1999).CrossRefGoogle Scholar
6.Lightfoot, P., Woodcock, D.A., Maple, M.J., Villaescusa, L.A. and Wright, P.A.: The widespread occurrence of negative thermal expansion in zeolites. J. Mater. Chem. 11, 212 (2001).CrossRefGoogle Scholar
7.Mary, T.A., Evans, J.S.O., Vogt, T. and Sleight, A.W.: Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272, 90 (1996).CrossRefGoogle Scholar
8.Evans, J.S.O., David, W.I.F. and Sleight, A.W.: Structural investigation of the negative-thermal-expansion materials ZrW2O8. Acta Crystallogr. B 55, 333 (1999).CrossRefGoogle ScholarPubMed
9.Mittal, R., Chaplot, S.L., Schober, H. and Mary, T.A.: Origin of negative thermal expansion in cubic ZrW2O8 revealed by high pressure inelastic neutron scattering. Phys. Rev. Lett. 86, 4602 (2001).CrossRefGoogle ScholarPubMed
10.Yamamura, Y., Makajima, N., Tsuji, T., Koyano, M., Iwasa, Y. and Katayama, S.: Low temperature heat capacities and Raman spectra of negative thermal expansion compounds ZrW2O8 and HfW2O8. Phys. Rev. B 66, 014301 (2002).CrossRefGoogle Scholar
11.Lenain, G.E., McKinstry, H.A., Limaye, S.Y. and Woodward, A.: Low thermal expansion of alkali-zirconium phosphates. Mater. Res. Bull. 19, 1451 (1984).CrossRefGoogle Scholar
12.Agrawal, D.K.: [NZP]: A new family of real materials for low thermal expansion applications. J. Mater. Edu. 16, 139 (1994).Google Scholar
13.Agrawal, D.K., Roy, R. and McKinstry, H.A.: Ultra low thermal expansion phases: Substituted ‘PMN’ perovskites. Mater. Res. Bull. 22, 83 (1987).CrossRefGoogle Scholar
14.Jaffe, B.: Piezoelectric Ceramics (Academic Press, London, U.K., 1971).Google Scholar
15.Sawaguchi, E. and Charters, M.L.: Aging and the double hysteresis loop of PbλCa1-λTiO3 Ceramics. J. Am. Ceram. Soc. 42, 157 (1959).CrossRefGoogle Scholar
16.Chandra, A. and Pandey, D.: Evolution of crystallographic phases in the system (Pb1-xCax)TiO3: A Rietveld study. J. Mater. Res. 18, 407 (2003).CrossRefGoogle Scholar
17.Kim, B.G., Cho, S.M., Kim, T.Y. and Jang, H.M.: Giant dielectric permittivity observed in Pb-based perovskite ferroelectrics. Phys. Rev. Lett. 86, 3404 (2001).CrossRefGoogle ScholarPubMed
18.Rittenmyer, K.M. and Ting, R.Y.: Piezoelectric and dielectric properties of calcium and samarium modified lead titanate ceramics for hydroacoustic applications. Ferroelectrics 110, 171 (1990).CrossRefGoogle Scholar
19.Takahashi, T.: Lead titanate ceramics with large piezoelectric anisotropy and their applications. Ceram. Bull. 69, 691 (1990).Google Scholar
20.Yamashita, Y., Yokoyama, K., Honda, H. and Takahashi, T.: (Pb,Ca)((Co1/2W1/2),Ti)O3 piezoelectric ceramics and their applications. Jpn. J. Appl. Phys. 20, 183 (1981).CrossRefGoogle Scholar
21.Ranjan, R., Singh, N., Pandey, D., Siruguri, V., Krishna, P.S.R., Paranjpe, S.K. and Banerjee, A.: Room temperature crystal structure and relaxor ferroelectric behaviour of Pb0.5Ca0.5TiO3. Appl. Phys. Lett. 70, 3221 (1997).CrossRefGoogle Scholar
22.Xing, X., Chen, J., Deng, J. and Liu, G.: Solid solution Pb1-xSrxTiO3 and its thermal expansion. J. Alloys Comp. 360, 286 (2003).CrossRefGoogle Scholar
23.Chu, C.N., Saka, N. and Suh, N.P.: Negative thermal expansion ceramics: A review. Mater. Sci. Eng. 95, 303 (1987).CrossRefGoogle Scholar
24.Pryde, A.K.A., Hammonds, K.D., Dove, M.T., Heine, V., Gale, J.D. and Warren, M.C.: Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7. J. Phys.: Condens. Matt. 8, 10973 (1996).Google Scholar
25.Chandra, A., Pandey, D., Saha, S., Sood, A.K. and Krishna, P.S.R.: Evidence of a new phase transition in Ca2+ modified PbTiO3 ceramics: Neutron diffraction and Raman spectroscopic studies. (unpublished).Google Scholar