Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:24:44.441Z Has data issue: false hasContentIssue false

Lanthanum zirconate: A single buffer layer processed by solution deposition for coated conductor fabrication

Published online by Cambridge University Press:  31 January 2011

S. Sathyamurthy
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
M. Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
H-Y. Zhai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
H. M. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
P. P. Martin
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
A. Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

A single layer of La2Zr2O7 (LZO), deposited on textured Ni and Ni–1.7% Fe–3% W (Ni–W) tapes by a low-cost sol-gel process, is used as buffer layer for the growth of YBa2Cu3O7−δ (YBCO) coated conductors. It is shown for the first time that such single buffer layers can be used for the deposition of YBCO yielding critical current densities (Jc) that are comparable to those typically obtained using CeO2/YSZ/Y2O2 trilayers on identical substrates, i.e., in excess of 1 MA/cm2 at 77 K and self-field. The properties of the YBCO films and the dependence of Jc on thickness of the LZO layer are investigated.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
2.Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
3.Bauer, M., Semerad, R., and Kinder, H., IEEE Trans. Appl. Supercond. 9, 1502 (1999).CrossRefGoogle Scholar
4.Dimos, D., Choudhary, P., Mannhart, J., and Goues, F.K. Le, Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
5.Mathis, J.E., Goyal, A., Lee, D.F., List, F.A., Paranthaman, M., Christen, D.K., Specht, E.D., Kroeger, D.M., and Martin, P.M., Jpn. Appl. Phys. 37, L1379 (1998).CrossRefGoogle Scholar
6.Kang, B.W., Goyal, A., Lee, D.F., Mathis, J.E., Specht, E.D., Martin, P.M., Kroeger, D.M., Paranthaman, M., and Sathyamurthy, S., Mater. Res. (2002, in press).Google Scholar
7.Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
8.Paranthaman, M., Chirayil, T.G., List, F., Cui, X., Goyal, A., Lee, D.F., Specht, E.D., Martin, P.M., Williams, R.K., Kroeger, D.M., Morrell, J.S., Beach, D.B., Feenstra, R., and Christen, D.K., J. Am. Ceram. Soc. 84, 273 (2001).CrossRefGoogle Scholar
9.Schwartz, R.W., Glem, P.G., Voigt, J.A., Byhoff, E.R., Stry, M. Van, Headley, T.J., and Missert, N.A., J. Am. Ceram. Soc. 82, 2359 (1999).CrossRefGoogle Scholar
10.Smith, J.A., Cima, M.J., and Sonnenberg, N., IEEE Trans. Appl. Supercond. 9, 1531 (1999).CrossRefGoogle Scholar
11.Sathyamurthy, S., Paranthaman, M., Aytug, T., Kang, B.W., Martin, A. Goyal, D.M. Kroeger, and D.K. Christen, Mater. Res. (submitted for publication).Google Scholar
12.Goyal, A., Feenstra, R., Paranthaman, M., Thompson, J., Kang, B.W., Cantoni, C., Lee, D.F., List, F., Martin, P.M., Lara-Curzio, E., Stevens, C., Kroeger, D.M., Kowalewski, M., Specht, E.D., Aytug, T., Sathyamurthy, S., Williams, R.W., Ericson, R., Physica C (2001).Google Scholar