Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T15:00:36.576Z Has data issue: false hasContentIssue false

Kinetics of reactions of Ni contact pads with Si nanowires

Published online by Cambridge University Press:  26 July 2011

Nicholas S. Dellas
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Michael Abraham
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Sharis Minassian
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Chito Kendrick
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Suzanne E. Mohney*
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

For development and integration of Si nanowires into nanoelectronic devices, an understanding of Ni silicide formation in electrical contacts to Si nanowires is necessary. Here, we examine the kinetics of Ni silicide phase formation. For Si nanowires with [111] growth directions, NiSi2 is the only phase to form in the temperature range 400–550 °C, and the NiSi2 growth exhibits linear kinetics from 400 to 500 °C with an activation energy of 0.76 ± 0.10 eV. In the case of Si nanowires with [112] growth directions, growth of the θ-Ni2Si phase in contact with the Si nanowire occurs with parabolic kinetics over the temperature range 400–550 °C, and an activation energy of 1.45 ± 0.07 eV/atom is extracted. Differences in the growth rates for Ni silicide phases with different SiNW growth directions implies that for simultaneous preparation of SiNW devices with Ni silicide contacts, SiNWs with the same growth direction are necessary.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cui, Y., Zhong, Z., Wang, D., Wang, W.U., and Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149 (2003).Google Scholar
2.Duan, X., Niu, C., Sahi, V., Chen, J., Wallace Parce, J., Empedocles, S., and Goldman, J.L.: High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274 (2003).CrossRefGoogle ScholarPubMed
3.Cui, Y., Wei, Q., Park, H., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).CrossRefGoogle ScholarPubMed
4.Lavoie, C., d’Heurle, F.M., Detavernier, C., and Cabral, C. Jr.: Towards implementation of a nickel silicide process for CMOS technologies. Microelectron. Eng. 70, 144 (2003).CrossRefGoogle Scholar
5.Lu, K.C., Tu, K.N., Wu, W.W., Chen, L.J., Yoo, B.Y., and Myung, N.V.: Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si. Appl. Phys. Lett. 90, 253111 (2007).CrossRefGoogle Scholar
6.Lu, K.C., Wu, W.W., Wu, H.W., Tanner, C.M., Chang, J.P., Chen, L.J., and Tu, K.N.: In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 7(8), 2389 (2007).Google Scholar
7.Chou, Y.C., Wu, W.W., Chen, L.J., and Tu, K.N.: Homogeneous nucleation of epitaxial CoSi2 and NiSi in Si nanowires. Nano Lett. 9(6), 2337 (2009).CrossRefGoogle ScholarPubMed
8.Lin, Y.C., Chen, Y., Xu, D., and Huang, Y.: Growth of nickel silicides in Si and Si/SiOx core/shell nanowires. Nano Lett. 10, 4721 (2010).Google Scholar
9.Weber, W.M., Geelhaar, L., Unger, E., Cheze, C., Kreupl, F., Riechert, H., and Lugli, P.: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi B 244(11), 4170 (2007).CrossRefGoogle Scholar
10.Wu, Y., Xiang, J., Yang, C., Lu, W., and Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61 (2004).CrossRefGoogle ScholarPubMed
11.Zhang, Z., Lu, J., Hellstrom, P.E., Ostling, M., and Zhang, S.L.: Ni2Si nanowires of extraordinarily low resistivity. Appl. Phys. Lett. 88, 213103 (2006).CrossRefGoogle Scholar
12.Dellas, N.S., Liu, B.Z., Eichfeld, S.M., Eichfeld, C.M., Mayer, T.S., and Mohney, S.E.: Orientation dependence of nickel silicide formation in contacts to silicon nanowires. J. Appl. Phys. 105, 094309 (2009).Google Scholar
13.Katsman, A., Yaish, Y., Rabkin, E., and Beregovsky, M.: Surface diffusion controlled formation of nickel silicides in silicon nanowires. J. Electron. Mater. 39(4), 365 (2010).CrossRefGoogle Scholar
14.Ciccariello, J.C., Poize, S., and Gas, P.: Lattice and grain boundary self-diffusion in Ni2Si: Comparison with thin-film formation. J. Appl. Phys. 67(7), 3315 (1990).CrossRefGoogle Scholar
15.Zheng, L.R., Hung, L.S., Mayer, J.W., Majni, G., and Ottaviani, G.: Lateral diffusion of Ni and Si through Ni2Si in Ni/Si couples. Appl. Phys. Lett. 41(7), 646 (1982).CrossRefGoogle Scholar