Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T08:47:16.075Z Has data issue: false hasContentIssue false

Kinetics of hydrogen in preparing amorphous B5C:H thin films

Published online by Cambridge University Press:  18 February 2011

Ruqiang Bao
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Douglas B. Chrisey*
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Daniele J. Cherniak
Affiliation:
Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The kinetics of hydrogen in preparing amorphous boron carbide (a-B5C:H) thin films was studied. The hydrogen concentration of a-B5C:H thin films formed by plasma-enhanced chemical vapor deposition (PECVD) from a single-source precursor (o-B10C2H12) is ∼35–50 at.% as determined by nuclear reaction analysis. The hydrogen concentration of the a-B5C:H thin films is an exponential function of the precursor flux during the deposition. After annealing, the hydrogen concentration in the a-B5C:H thin films decreases with the increasing annealing temperature. The kinetics of hydrogen removal during annealing is controlled predominantly by its dissociation from PECVD radicals in the a-B5C:H thin films. The activation energy of about 0.14 eV is related to hydrogen dissociation from B–H bonds, but higher activation energy (∼0.44 eV) is required to strip the hydrogen atoms from C–H bonds in the thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, M.W., McCauley, J.W., and Hemker, K.J.: Shock-induced localized amorphization in boron carbide. Science 299, 1563 (2003).CrossRefGoogle ScholarPubMed
2.Wu, M.L., Kiely, J.D., Klemmer, T., Hsia, Y.T., and Howard, K.: Process-property relationship of boron carbide thin films by magnetron sputtering. Thin Solid Films 449, 120 (2004).CrossRefGoogle Scholar
3.Golikova, O.A.: Boron and boron-based semiconductors. Phys. Status Solidi. A Appl. Res. 51, 11 (1979).CrossRefGoogle Scholar
4.Schmechel, R. and Werheit, H.: Correlation between structural defects and electronic properties of icosahedral boron-rich solids. J. Phys. Condens. Matter 11, 6803 (1999).CrossRefGoogle Scholar
5.Emin, D.: Unusual properties of icosahedral boron-rich solids. J. Solid State Chem. 179, 2791 (2006).CrossRefGoogle Scholar
6.Carrard, M., Emin, D., and Zuppiroli, L.: Defect clustering and self-healing of electron-irradiated boron-rich solids. Phys. Rev. B 51, 11270 (1995).CrossRefGoogle ScholarPubMed
7.Harken, A.D., Day, E.E., Robertson, B.W., and Adenwalla, S.: Boron-rich semiconducting boron carbide neutron detector. Jpn. J. Appl. Phys. 44, 444 (2005).CrossRefGoogle Scholar
8.Billa, R.B., Caruso, A.N., and Brand, J.I.: A new class of solar cells: Isomeric boron carbide semiconductors with fourth quadrant conductivity, in Progress in Compound Semiconductor Materials III− Electronic and Optoelectronic Applications, edited by Friedman, D.J., Manasreh, O., Buyanova, I.A., Munkholm, A., and Auret, F.D.(Mater. Res. Soc. Symp. Proc. 799, Warrendale, PA, 2004), Z3.10 p. 173.Google Scholar
9.Caruso, A.N., Billa, R.B., Balaz, S., Brand, J.I., and Dowben, P.A.: The heteroisomeric diode. J. Phys. Condens. Matter 16, L139 (2004).CrossRefGoogle Scholar
10.Lee, S., Mazurowski, J., Ramseyer, G., and Dowben, P.A.: Characterization of boron-carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes. J. Appl. Phys. 72, 4925 (1992).CrossRefGoogle Scholar
11.Byun, D., Hwang, S.d., Dowben, P.A., Perkins, F.K., Filips, F., and Ianno, N.J.: Heterojunction fabrication by selective area chemical vapor deposition induced by synchrotron radiation. Appl. Phys. Lett. 64, 1968 (1994).CrossRefGoogle Scholar
12.Lee, S.W. and Dowben, P.A.: The properties of boron-carbide silicon heterojunction diodes fabricated by plasma-enhanced chemical-vapor-deposition. Appl. Phys. A Mater. Sci. Process 58, 223 (1994).CrossRefGoogle Scholar
13.Hwang, S.D., Yang, K., Dowben, P.A., Ahmad, A.A., Ianno, N.J., Li, J.Z., Lin, J.Y., Jiang, H.X., and McIlroy, D.N.: Fabrication of n-type nickel doped B5C1+δ homojunction and heterojunction diodes. Appl. Phys. Lett. 70, 1028 (1997).CrossRefGoogle Scholar
14.Carlson, L., Lagraffe, D., Balaz, S., Ignatov, A., Losovyj, Y.B., Choi, J., Dowben, P.A., and Brand, J.I.: Doping of boron carbides with cobalt, using cobaltocene. Appl. Phys. A Mater. Sci. Process 89, 195 (2007).CrossRefGoogle Scholar
15.Hwang, S.D., Byun, D., Ianno, N.J., Dowben, P.A., and Kim, H.R.: Fabrication of boron-carbide/boron heterojunction devices. Appl. Phys. Lett. 68, 1495 (1996).CrossRefGoogle Scholar
16.Emin, D.: Icosahedral boron-rich solids. Phys. Today 40, 55 (1987).CrossRefGoogle Scholar
17.Dowben, P.A., Kizilkaya, O., Liu, J., Montag, B., Nelson, K., Sabirianov, I., and Brand, J.I.: 3d transition metal doping of semiconducting boron carbides. Mater. Lett. 63, 72 (2009).CrossRefGoogle Scholar
18.Mori, T. and Nishimura, T.: Thermoelectric properties of homologous p- and n-type boron-rich borides. J. Solid State Chem. 179, 2908 (2006).CrossRefGoogle Scholar
19.Caruso, A.N., Lunca-Popa, P., Losovyj, Y.B., Gunn, A.S., and Brand, J.I.: The band offsets of isomeric boron carbide, in Materials for Photovoltaics, edited by Durstock, M., Friedman, D., Gaudiana, R., and Rockett, A. (Mater. Res. Soc. Symp. Proc. 836, Warrendale, PA, 2005), L5.40, p. 185.Google Scholar
20.Bao, R. and Chrisey, D.B.: Chemical states of carbon in amorphous boron carbide thin films deposited by radio frequency magnetron sputtering. Thin Solid Films 519, 164 (2010).CrossRefGoogle Scholar
21.Rappaport, P.: The electron-voltaic effect in p-n junctions induced by beta-particle bombardment. Phys. Rev. 93, 246 (1954).CrossRefGoogle Scholar
22.Sezer, A.O. and Brand, J.I.: Chemical vapor deposition of boron carbide. Mater. Sci. Eng. B 79, 191 (2001).CrossRefGoogle Scholar
23.Poortmans, J. and Arkhipov, V.: Thin Film Solar Cells: Fabrication, Characterization and Applications(John Wiley & Sons, West Sussex, England, 2007), pp. 120.Google Scholar
24.Schropp, R.E.I. and Zeman, M.: Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer Academic Publisher, Norwell, MA, 1998), pp.11112.CrossRefGoogle Scholar
25.McIlroy, D.N., Zhang, J.D., Dowben, P.A., and Heskett, D.: Band gaps of doped and undoped films of molecular icosahedra. Mater. Sci. Eng. 217, 64 (1996).CrossRefGoogle Scholar
26.Caruso, A.N., Bernard, L., Xu, B., and Dowben, P.A.: Comparison of adsorbed orthocarborane and metacarborane on metal surfaces. J. Phys. Chem. B 107, 9620 (2003).CrossRefGoogle Scholar
28.Bagley, B.G., Aspnes, D.E., Adams, A.C., and Benenson, R.E.: Optical properties of LPCVD aB(H). J. Non-Cryst. Solids 3536, 441 (1980).CrossRefGoogle Scholar
29.Schulz, D.L., Lutfurakhmanov, A., Maya, B., Sandstrom, J., Bunzow, D., Qadri, S.B., Bao, R.Q., Chrisey, D.B., and Caruso, A.N.: Characterization of a-B5C: H prepared by PECVD of orthocarborane: Results of preliminary FTIR and nuclear-reaction analysis studies. J. Non-Cryst. Solids 354, 2369 (2008).CrossRefGoogle Scholar
30.Sneddon, L.G.: Transition metal promoted reactions of polyhedral boranes and carboranes. Pure Appl. Chem. 59, 837 (1987).CrossRefGoogle Scholar
31.Baughman, R.H.: NMR, calorimetric, and diffraction study of molecular motion in crystalline carboranes. J. Chem. Phys. 53, 3781 (1970).CrossRefGoogle Scholar
32.Jacobsohn, L.G., Schulze, R.K., Maia da Costa, M.E.H., and Nastasi, M.: X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering. Surf. Sci. 572, 418 (2004).CrossRefGoogle Scholar