Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T06:47:26.925Z Has data issue: false hasContentIssue false

Kinetics of formation of silicides: A review

Published online by Cambridge University Press:  03 March 2011

F. M. d'Heurle
Affiliation:
IBM Research Center, P. O. Box 218, Yorktown Heights, New York 10598
P. Gas
Affiliation:
IBM Research Center, P. O. Box 218, Yorktown Heights, New York 10598
Get access

Abstract

The kinetics of silicide growth are classified into three different categories: (a) diffusion controlled, (b) nucleation controlled, (c) others (reaction rate controlled). These are analyzed with the aim of understanding both the phenomenology of growth and the specific atomic mechanisms of phase formation. Diffusion-controlled growth is discussed with respect to the Nernst-Einstein equation. Stress relaxation is considered as a possible cause of reaction-rate control. The relative merits of two different types of marker experiments are compared. A few silicides are discussed in terms of what can be inferred about diffusion mechanisms. The competition between reaction-rate and diffusion control phenomena is shown to have specific effects on the sequence of phase formation; it is also related to the formation of some amorphous compounds. Reactions between silicon and alloyed metal films are used to illustrate the respective influences of mobility and driving force factors on the kinetics of silicide growth; they can also be used to underline the dominance of nucleation over diffusion in some silicide formation processes.

Type
Commentaries and Rreviews
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bartlett, R. W., Gage, P. R., and Larsen, P. A., Trans. AIME 230, 1528 (1964).Google Scholar
2Gage, P. R. and Bartlett, R. W., Trans. AIME 236, 1230 (1966).Google Scholar
3Bartlett, R. W., Trans. AIME 239, 1109 (1967).Google Scholar
4Chow, T. P., Brown, D. M., Steckl, A. J., and Garfinkel, M., J. Appl. Phys. 51, 5981 (1980).CrossRefGoogle Scholar
5Nicolet, M.-A. and Lau, S. S., in VLSI Electronics, Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic, New York, 1983), Vol. 6, p. 330.Google Scholar
6Eizenberg, M. and Tu, K. N., J. Appl. Phys. 53, 6886 (1982).Google Scholar
7Lau, S. S., Feng, J. S.-Y., Olowolafe, J. O., and Nicolet, M.-A., Thin Solid Films 25, 415 (1975).CrossRefGoogle Scholar
8van Gurp, G. J. and Langereis, C., J. Appl. Phys. 46, 4301 (1975).CrossRefGoogle Scholar
9Lau, S. S., Mayer, J. W., and Tu, K. N., J. Appl. Phys. 49, 4005 (1978).CrossRefGoogle Scholar
10Tu, K. N., Ottaviani, G., Thompson, R. D., and Mayer, J. W., J. Appl. Phys. 53, 4406 (1982).CrossRefGoogle Scholar
11Tu, K. N., Chu, W. K., and Mayer, J. W., Thin Solid Films 25, 403 (1975).CrossRefGoogle Scholar
12Olowolafe, J. O., Nicolet, M.-A., and Mayer, J. W., Thin Solid Films 38, 143 (1976).CrossRefGoogle Scholar
13Scott, D. M. and Nicolet, M.-A., Nucl. Instrum. Methods 182/183, 655 (1981).CrossRefGoogle Scholar
14Coe, D. J. and Rhoderick, E. H., J. Phys. D: Appl. Phys. 9, 965 (1976).CrossRefGoogle Scholar
15Scott, D. M. and Nicolet, M.-A., Phys. Status Solidi A 66, 773 (1981).CrossRefGoogle Scholar
16Majni, G., Delia Valle, F., and Nobili, C., J. Phys. D: Appl. Phys. 17, L77 (1984).CrossRefGoogle Scholar
17d'Heurle, F. M., Petersson, C. S., Baglin, J. E., LaPlaca, S. J., and Wong, C. Y., J. Appl. Phys. 55, 4208 (1984).CrossRefGoogle Scholar
18Petersson, C. S., Baglin, J. E., d'Heurle, F. M., and LaPlaca, S. J., J. Appl. Phys. 53, 4866 (1982).CrossRefGoogle Scholar
19Petersson, C. S., Anderson, R., Baglin, J. E., Dempsey, J., Hammer, W., d'Heurle, F. M., and LaPlaca, S. J., J. Appl. Phys. 51, 373 (1980).CrossRefGoogle Scholar
20Bower, R. W. and Mayer, J. W., Appl. Phys. Lett. 20, 359 (1972).CrossRefGoogle Scholar
21Hutchins, C. A. and Shepela, A., Thin Solid Films 18, 343 (1973).CrossRefGoogle Scholar
22Fertig, D. J. and Robinson, G. Y., Solid-State Electron. 19, 407 (1976).CrossRefGoogle Scholar
23Cheung, N. W., Nicolet, M.-A., Wittmer, M., Evans, C. A., and Sheng, T. T., Thin Solid Films 16, 1461 (1973).Google Scholar
24Ziegler, J. F., Mayer, J. W., Kircher, C. J., and Tu, K. N., J. Appl. Phys. 44, 3851 (1973).CrossRefGoogle Scholar
25Petersson, C. S., Baglin, J. E., Hammer, W., d'Heurle, F. M., Kuan, T. S., Odhomari, I., de Sousa Pires, J., and Tove, P. A., J. Appl. Phys. 50, 3357 (1979).CrossRefGoogle Scholar
26Muta, H. and Shinoda, D., J. Appl. Phys. 43, 2913 (1972).CrossRefGoogle Scholar
27Poate, J. M. and Tisone, T. C., Appl. Phys. Lett. 24, 391 (1974).CrossRefGoogle Scholar
28Canali, C., Catellani, C., Prudenziati, M., Wadlin, W. H., and Evans, C. A., Appl. Phys. Lett. 31, 43 (1977).CrossRefGoogle Scholar
29Crider, C. A. and Poate, J. M., Appl. Phys. Lett. 36, 417 (1980).CrossRefGoogle Scholar
30Lien, C. D., Nicolet, M.-A., Pai, C. S., and Lau, S. S., Appl. Phys. A 36,153(1985).CrossRefGoogle Scholar
31Kidson, G. V., J. Nucl. Mater. 3, 21 (1961).CrossRefGoogle Scholar
32Pretorius, R., Strydom, W., and Mayer, J., Phys. Rev. B 22, 1885 (1980).CrossRefGoogle Scholar
33Zheng, L. R., Hung, L. S., and Mayer, J. W., J. Vac. Sci. Technol. A 1, 758 (1983).CrossRefGoogle Scholar
34d'Heurle, F. M., IBM RC Report No. 10422 (Publication Department, IBM Research, Yorktown Heights, NY, 1983).Google Scholar
35Baglin, J. E., d'Heurle, F. M., and Petersson, C. S., Appl. Phys. Lett. 36,594(1980).CrossRefGoogle Scholar
36Thompson, R. D., Tsaur, B. Y., and Tu, K. N., Appl. Phys. Lett. 38, 535 (1981).CrossRefGoogle Scholar
37Baglin, J. E., d'Heurle, F. M., and Petersson, C. S., J. Appl. Phys. 52, 2841 (1981).CrossRefGoogle Scholar
38Barin, J. and Knacke, O., Thermodynamic Properties of Inorganic Substances (Springer, Berlin, 1973).Google Scholar
39Barin, J., Knacke, O., and Kubaschewski, O., Thermodynamic Properties of Inorganic Substances Supplement (Springer, Berlin, 1977).CrossRefGoogle Scholar
40d'Heurle, F. M. and Petersson, C. S., Thin Solid Films 128, 283 (1985).CrossRefGoogle Scholar
41Appelbaum, A., Knoell, R. V., and Murarka, S. P., J. Appl. Phys. 57, 1322(1985).CrossRefGoogle Scholar
42Lien, C.-D., Nicolet, M.-A., and Lau, S. S., Appl. Phys. A 34, 249 (1984).CrossRefGoogle Scholar
43Fan, J. C. and Anderson, C. H., J. Appl. Phys. 52, 4003 (1981).CrossRefGoogle Scholar
44Donovan, E. P., Saepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).CrossRefGoogle Scholar
45Petersson, C. S., Baglin, J. E., d'Heurle, F. M., Dempsey, J. J., Harper, J. M., Serrano, C. M., and Tsai, M. Y., in Thin Film Interfaces and Interactions, edited by Baglin, J. E. and Poate, J. (The Electrochemical Society, Pennington, NJ, 1980), p. 290.Google Scholar
46Kato, H. and Nakamura, Y., Thin Solid Films 34, 135 (1976).CrossRefGoogle Scholar
47Guivarc'h, A., Auvray, P., Berthou, L., Le Cun, M., Boulet, J. P., Henoc, P., Pelous, G., and Martinez, A., J. Appl. Phys. 49,233 (1978).Google Scholar
48Bower, R. W. and Mayer, J. W., Appl. Phys. Lett. 20, 359 (1972).CrossRefGoogle Scholar
49Oertel, B. and Sperling, R., Thin Solid Films 37, 185 (1976).CrossRefGoogle Scholar
50Locker, L. D. and Capio, C. D., J. Appl. Phys. 44, 4366 (1973).CrossRefGoogle Scholar
51Hashimoto, N., Trans. AIME 239, 1109 (1967).Google Scholar
52Tu, K. N., Ziegler, J. F., and Kircher, C. J., Appl. Phys. Lett. 23, 493 (1973).CrossRefGoogle Scholar
53Krautle, H., Nicolet, M.-A., and Mayer, J. W., J. Appl. Phys. 45, 3304 (1974).CrossRefGoogle Scholar
54Fomin, B. I., Gershinskii, A. E., Cherepan, E. I., and Edelman, F. L., Phys. Status Solidi A 36, K89 (1976).CrossRefGoogle Scholar
55Rigo, S., Turos, A., and Velasco, G., in the Proceedings of the 7th International Vacuum Congress, Vienna, 1978, p. 1109.Google Scholar
56Murarka, S. P. and Fraser, D. B., J. Appl. Phys. 51, 342 (1980).CrossRefGoogle Scholar
57Iyer, S. S. and Ting, C. Y., J. Electrochem. Soc. 132, 2240 (1985).CrossRefGoogle Scholar
58Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972), p. 589.Google Scholar
59Suchet, J. P., Crystal Chemistry and Semiconduction (Academic, New York, 1971).Google Scholar
60d'Heurle, F. M., in VLSI Science and Technology 1982, edited by Dell'Oca, C. and Bullis, W. M. (The Electrochemical Society, Pennington, NJ, 1982), p. 194.Google Scholar
61Hung, L. S., Gyulai, J., Mayer, J. W., Lau, S. S., and Nicolet, M.-A., J. Appl. Phys. 54, 5076 (1983).CrossRefGoogle Scholar
62Göltz, G., Torres, J., Laizerowicz, J., and Bomchil, G., Thin Solid Films 124, 19 (1985).CrossRefGoogle Scholar
63Göltz, G. (private communication).Google Scholar
64Botha, A. P. and Pretorius, P., Thin Solid Films 93, 127 (1982).CrossRefGoogle Scholar
65Chu, W. K., Lau, S. S., Mayer, J. W., Muller, H., and Tu, K. N., Thin Solid Films 25, 393 (1975).CrossRefGoogle Scholar
66Finstad, T. G., Phys. Status Solid A 63, 223 (1981).CrossRefGoogle Scholar
67Bartur, M. and Nicolet, M.-A., J. Appl. Phys. 54, 5404 (1983).CrossRefGoogle Scholar
68d'Heurle, F. M., Stolt, L., Petersson, C. S., and Stritzker, B., J. Appl. Phys. 53, 5678(1982).Google Scholar
69Baglin, J. E., Dempsey, J. J., Hammer, W., d'Heurle, F. M., Petersson, C. S., and Serrano, C., J. Electron. Mater. 8, 641 (1979).CrossRefGoogle Scholar
70Baglin, J. E., d'Heurle, F. M., Hammer, W., and Petersson, C. S., Nucl. Instrum. Methods 168, 491 (1980).CrossRefGoogle Scholar
71Mallard, W. C., Gardner, A. B., Bass, R. F., and Slifkin, L. M., Phys. Rev. 129, 617 (1963).CrossRefGoogle Scholar
72Barrett, C. S., Structure of Metals (McGraw-Hill, New York, 1942), p. 646.Google Scholar
73Engström, I., Structural Chemistry of Platinum Metal Silicides (Acta Universitatis Upsaliensis, Uppsala, 1970).Google Scholar
74Poutcharovsky, D. J. and Parthe, E., Acta Cryst. B 30, 2692 (1974).CrossRefGoogle Scholar
75Nix, F. C. and Jaumot, F. E., Phys. Rev. 83, 1275 (1951).CrossRefGoogle Scholar
76Berkowitz, A. E., Jaumot, F. E., and Nix, F. C., Phys. Rev. 95, 1185 (1954).CrossRefGoogle Scholar
77Tsaur, B. Y. and Hung, L. S., Appl. Phys. Lett. 37, 922 (1980).CrossRefGoogle Scholar
78van Gurp, G. J. and van der Weg, W. F., J. Appl. Phys. 49, 4011 (1978).CrossRefGoogle Scholar
79Lien, C.-D., Bartur, M., and Nicolet, M.-A., in Proceedings of the Materials Research Society (North-Holland, New York, 1984), Vol. 25, p. 51.Google Scholar
80Yanagisawa, S. and Fukuyama, T.J. Electrochem. Soc. 127, 1150 (1980).CrossRefGoogle Scholar
81Angilello, J., Baglin, J. E., d'Heurle, F. M., Petersson, C. S., and Segmuller, A., in Thin Film Interfaces and Interactions, edited by Baglin, J. E. and Poate, J. (The Electrochemical Society, Pennington, NJ, 1980), p. 369.Google Scholar
82Angilello, J., d'Heurle, F. M., Petersson, C. S., and Segmuller, A., J. Vac. Sci. Technol. 17, 471 (1980).CrossRefGoogle Scholar
83Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
84Cheng, Y.-T., Johnson, W. L., and Nicolet, M.-A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
85Schwarz, R. B., Wong, K. L., Johnson, W. L., and Clemens, B. M., J. Non-Crystalline Solids 61&62, 129 (1984).CrossRefGoogle Scholar
86Clemens, B. M. and Suchowski, M. J., Appl. Phys. Lett. 47, 943 (1985).CrossRefGoogle Scholar
87Meschter, P. G. and Worrell, E. L., Met. Trans. A 8, 502 (1977).CrossRefGoogle Scholar
88Duschman, S. and Lafferty, J. M., Scientific Foundations of Vacuum Technique (Wiley, New York, 1962), p. 702.Google Scholar
89Olowolafe, J. O., Nicolet, M.-A., and Mayer, J. W., J. Appl. Phys. 47, 5182 (1976).CrossRefGoogle Scholar
90Zingu, E. C., Comrie, C., and Pretorius, R., J. Appl. Phys. 54, 2392 (1983).CrossRefGoogle Scholar
91Shreter, U., So, F. C. T, and Nicolet, M.-A., J. Appl. Phys. 55, 3500 (1984).CrossRefGoogle Scholar
92Shewmon, P. G., Diffusion in Solids (McGraw-Hill, New York, 1963), p. 36.Google Scholar
93Adda, Y. and Philibert, J., La Diffusion dans les Solides (Presses Universitaires de France, Paris, 1966), p. 659.Google Scholar
94Schoijet, M. and Girifalco, L. A., J. Phys. Chem. Solids 29, 911 (1968).CrossRefGoogle Scholar
95Lidiard, A. B., in Crystals with the Fluorite Structure, edited by Hayes, H. (Clarendon, Oxford, 1974), p. 124.Google Scholar
96Sauer, R. W. and Freise, E. J., in Anisotropy in Single Crystal Refractory Compounds, edited by Vahldiek, F. M. and Mersoleds, S. A. (Plenum, New York, 1968), p. 459.Google Scholar
97Gupta, D., Lazarus, D., and Lieberman, D. S., Phys. Rev. 153, 863 (1967).CrossRefGoogle Scholar
98Adda, Y. and Philibert, J., La Diffusion dans les Solides (Presses Universitaires de France, Paris, 1966), pp. 491, 660.Google Scholar
99Deal, B . E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
100Tu, K. N., in Advances in Electronics Materials, edited by Wessels, B. and Chin, G. V. (American Society for Metals, Metals Park, Ohio, in press).Google Scholar
101Guy, A. G. and Oikawa, H., Trans. AIME 245, 2293 (1969).Google Scholar
102Gösele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
103Olowolafe, J. O., Tu, K. N., and Angelillo, J., J. Appl. Phys. 50, 6316 (1979).CrossRefGoogle Scholar
104Mayer, J. W., Lau, S. S., and Tu, K. N., J. Appl. Phys. 50, 5885 (1979).Google Scholar
105Eizenberg, M. and Tu, K. N., J. Appl. Phys. 53, 1577 (1982).CrossRefGoogle Scholar
106Applebaum, A., Eizenberg, M., and Brener, R., J. Appl. Phys. 55, 914 (1984).CrossRefGoogle Scholar
107Zheng, L. R., Hung, L. S., and Mayer, J. W., Thin Solid Films 104, 207 (1983).CrossRefGoogle Scholar
108d'Heurle, F. M., J. Appl. Phys. 57, 2311 (1985).CrossRefGoogle Scholar
109Rothman, S. J., J. Appl. Phys. 58, 2073 (1985).CrossRefGoogle Scholar
110d'Heurle, F. M., Anfiteatro, D. D., Deline, V. R., and Finstad, T. G., Thin Solid Films 128, 107 (1985).CrossRefGoogle Scholar
111Finstad, T. G., Anfiteatro, D. D., Deline, V. R., d'Heurle, F. M., Gas, P., Moruzzi, V. L., Schwartz, K., and Tersoff, J., Thin Solid Films (to be published).Google Scholar