Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T17:50:50.274Z Has data issue: false hasContentIssue false

Kinetics and mechanism of laser-driven powder synthesis from organosilane precursors

Published online by Cambridge University Press:  31 January 2011

G. W. Rice
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Co., Route 22 East, Annandale, New Jersey 08801
R. L. Woodin
Affiliation:
Corporate Research Laboratories, Exxon Research and Engineering Co., Route 22 East, Annandale, New Jersey 08801
Get access

Abstract

Laser-driven synthesis of refractory powders from the organosilicon compounds ((CH3)3Si)2NH and ((CH3)3Si)2O has been studied as prototypical of powder syntheses from large molecules. A cw CO2 laser is used for powder syntheses and pulsed TEA CO2 laser-driven homogeneous pyrolysis is used to study the initiation chemistry. Initial decomposition of the organosilanes by Si–C bond cleavage initiates free radical chain reactions which produce organosilicon polymers and subsequent refractory phases. A qualitative model is proposed which provides a framework for understanding the parameters influencing powder synthesis from large molecules.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1(a)Kaldor, A. and Woodin, R.L.Proc. IEEE 70, 565578 (1982); (b) J. Wolfram, M. Kneba, and P. M.W. Clough, German Patents No. 2,938,353 and 3,008,848; (c) M. Gauthier, C.G. Cureton, P. A. Hackett, and C. Willis, Appl. Phys. B 28, 43-50 (1982); (d) R.J. von Gutfeld, in Laser Applications, edited by J. F. Ready and R. K. Erf (Academic Press, Orlando, FL, 1984), Vol. 5.CrossRefGoogle Scholar
2(a)Cannon, W. R.Danforth, S. C.Flint, J. H.Haggerty, J. S. and Marra, R. A.J. Am. Ceram. Soc. 65, 324330 (1982); (b) W. R. Cannon, S.C. Danforth, J. S. Haggerty, and R. A. Marra, J. Am. Ceram. Soc. 65, 330-335 (1982); (c) S. C. Danforth and J. S. Haggerty, J. Am. Ceram. Soc. 66, C58-C59 (1983); (d) J. H. Flint and J. S. Haggerty, Proc. SPIE 458, 108-113 (1984); (e) J.S. Haggerty, “Sinterable Powders from Laser Driven Reactions — Final Report”, Report MIT-EL-82-002, Govt. Accession AD-A114062.Google Scholar
3Gupta, A. and Yardley, J.T.Proc. SPIE 458, 131139 (1984). See also U.S. Patent 4,468,474.Google Scholar
4Rice, G.W. “Laser Synthesis of TiO2”, U.S. Patent No. 4,548,798.Google Scholar
5Barringer, E. R. and Bowen, H. K.J. Am. Ceram. Soc. 65, C199–C201 (1982).Google Scholar
6Yan, M. F. and Rhodes, W. W.Mater. Sci. Eng. 61, 5966 (1983).Google Scholar
7Bowen, H.K.Mater. Sci. Eng. 44, 156 (1980).Google Scholar
8Rice, G.W.J. Am. Ceram. Soc. 69, C183–C185 (1986).CrossRefGoogle Scholar
9(a)Ambartzumian, R. V. and Letokhov, V. S. in Chemical and Biochemical Applications of Lasers, edited by Moore, C.B. (Academic Press, New York, 1977), Vol. III; (b) C. D. Cantrell, S. M. Freund, and J. L. Lyman, in Laser Handbook, edited by M. L. Stitch (North Holland, Amsterdam, 1979), Vol. 3; (c) J. I. Steinfeld, Laser-Induced Chemical Processes (Plenum Press, New York, 1981); (d) D.M. Golden, M.J. Rossi, A. E. Baldwin, and J. R. Barker, Ace. Chem. Res. 14, 56-62 (1981).Google Scholar
10(a)Shaub, W. M. and Bauer, S.H., Int. J. Chem. Kinet. 7, 509529 (1975); (b) D.F. McMillan, K.E. Lewis, G.P. Smith, and D.M. Golden, J. Phys. Chem. 86, 709-718 (1982); (c) P. B. Comita, M. R. Berman, C.B. Moore, and R.G. Bergman, J. Phys. Chem. 85, 3266-3276 (1981); (d) R.L. Woodin and K. A. Kajkowski, Proc. SPIE 458, 28-34 (1984).CrossRefGoogle Scholar
11Burger, H., Goetze, U., and Sawody, W., Spectrochim. Acta 26A, 671683 (1970).CrossRefGoogle Scholar
12Herzberg, G.Spectra of Diatomic Molecules (Van Nostrand, Princeton, NJ, 1950).Google Scholar
13Gaydon, A. G. and Wolfhard, H. G.Flames (Chapman and Hall, London, 1979).Google Scholar
14Selamoglu, N. and Steel, C.J. Phys. Chem. 87, 11331140 (1983).Google Scholar
15Benson, S. W.Thermochemical Kinetics (Wiley and Sons, New York, 1976).Google Scholar
16Steel, C.Starov, V.Leo, R.John, P. and Harrison, R. G.Chem. Phys. Lett. 62, 121124 (1979).CrossRefGoogle Scholar
17These included HCN, some C4 and higher hydrocarbons, and larger organosilicon molecules formed by addition of Me3Si, etc., radicals to the starting material.Google Scholar
18Rice, G. W. and Woodin, R. L.Proc. SPIE 458, 98107 (1984).CrossRefGoogle Scholar
19Olson, D.B.Tanzawa, T. and Gardina, W. C. Jr. , Int. J. Chem. Kint. 11, 2344 (1979).Google Scholar
20Kee, R.J.Miller, J.A. and Jefferson, T.M. “CHEMKIN: A General Purpose Problem Independent, Transportable, Fortran Chemical Kinetics Code Package,” Sandia Laboratories Report No. SAND80-8003, 1980.Google Scholar
21Kazoura, S.A. and Weber, W. P.J. Organomet. Chem. 268, 1930 (1984).Google Scholar
22The heat capacity of (Me3Si)2NH was calculated from data in JANAF tables23 by assuming that in the reaction 2Me4Si + NH3 + (Me3Si)2NH + 2CH4 the heat capacity of reactants equals the heat capacity of products.Google Scholar
21JANAF Thermochemical Tables, 2nd ed., edited by Stull, D.R. and Prophet, H.Nat. Bur. Stand., Washington, DC, 1971.Google Scholar
24Walsh, R.Ace. Chem. Res. 14, 246252 (1981).Google Scholar
25Baldwin, A.C.Davidson, I.M.T. and Reed, M. D.J. Chem. Soc, Faraday Trans. I 74, 21712178 (1978).Google Scholar
26Fjeldberg, T.Seip, R.Lappert, M. F. and Thome, A.J.J. Mol. Struct. 99, 295302 (1983).Google Scholar
27Benson, S. W. and O'Neal, H. E., “Kinetic Data on Gas Phase Unimolecular Reactions”, NSRDS-NBS 21, 1970.CrossRefGoogle Scholar
28Kerr, J. A. and Moss, S. J.Handbook of Bimolecular and Termomolecular Gas Reactions (CRC Press, Boca Raton, FL, 1981).Google Scholar
29Barton, T.J.Revis, A.Davidson, I.M.T.Ijadi-Maghsoodi, S., Hughes, K. J. and Gordon, M. S.J. Am. Chem. Soc. 108, 40224026 (1986).CrossRefGoogle Scholar
30The rate coefficient of H abstraction from the methyl groups of (Me3Si)2NH is taken to be the same as for Me3SiH,28 multiplied by 2 to account for the additional methyl groups.Google Scholar
31(a) Freund, H. J. and Bauer, S. H.J. Phys. Chem. 81, 9941000 (1977); (b) D. J. Frurip and S.H. Bauer loc. cit., 1001-1006; (c) ibid., 1007-1015.Google Scholar
32For a review see Haynes, B. S. and Wagner, H. Gg., Prog. Energy Com-bust. Sci. 7, 229273 (1981).Google Scholar
33For a review see Lahaye, J. and Prado, G.Chemistry and Physics of Carbon, edited by Walker, P. L. and Thrower, P. A. (Marcel Dekker, New York, 1978), Vol. 14, pp. 168294.Google Scholar
34Purnell, J.H. and Walsh, R.Proc. Roy. Soc. Ser. A293, 543561 (1966).Google Scholar
35Longeway, P. A. and Lampe, F. W.J. Am. Ceram. Soc. 103, 68136818 (1981).Google Scholar
36Mazdiyasni, K. S.Lynch, C. T. and Smith, J. S.J. Am. Ceram. Soc. 48, 372375 (1965).Google Scholar