Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T18:12:56.889Z Has data issue: false hasContentIssue false

Judd–Ofelt spectroscopic study of Mg/Er-codoped near-stoichiometric LiNbO3 crystals for integrated optics

Published online by Cambridge University Press:  31 January 2011

De-Long Zhang*
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
Hui Zheng
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China
Edwin Yue-Bun Pun
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Near-stoichiometric (NS) (Mg:)Er:LiNbO3 crystals were grown from melts containing 0.0/0.5, 0.5/0.5, and 1.0/0.5 mol%/mol% MgO/Er2O3. Crystal composition and optical properties studies show that the Li2O contents in these crystals increase all by ∼1 mol% relative to the congruent point. The 1.0 mol% MgO-doped NS crystal is just near optical damage threshold and withstands a 488 nm light intensity >0.74 MW/cm2 without optical damage. Unpolarized absorption spectra of these NS crystals were measured, and the Er3+ absorption cross-section spectra were determined. The Er3+ spectroscopic properties were studied by Judd–Ofelt theory. The results show that as the crystal composition approaches the stoichiometry, the Er3+ spectroscopic properties change definitely. The Er3+ ion in the NS crystal has smaller absorption cross section and hence weaker oscillator strength, lower emission rate, and longer radiative lifetime. Nevertheless, the radiative quantum efficiency is retained. In addition, the MgO codoping has less effect on the Er3+ spectroscopic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinkmann, R., Sohler, W., Suche, H.: Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415 (1991)CrossRefGoogle Scholar
2.Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., Sciancalepore, D.: Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000)CrossRefGoogle Scholar
3.Cantelar, E., Torchia, G.A., Sanz-Garcia, J.A., Pernas, P.L., Lifante, G., Cusso, F.: Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides. Appl. Phys. Lett. 83, 2991 (2003)CrossRefGoogle Scholar
4.Amin, J., Aust, J.A., Sanford, N.A.: Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3. Appl. Phys. Lett. 69, 3785 (1996)CrossRefGoogle Scholar
5.Helmfrid, S., Arvidsson, G., Webjorn, J., Linnarsson, M., Pihl, T.: Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition. Electron. Lett. 27, 913 (1991)CrossRefGoogle Scholar
6.Huang, C.H., McCaughan, L.: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996)CrossRefGoogle Scholar
7.Das, B.K., Ricken, R., Sohler, W.: Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide. Appl. Phys. Lett. 83, 1515 (2003)CrossRefGoogle Scholar
8.Das, B.K., Ricken, R., Quiring, V., Suche, H., Sohler, W.: Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. Opt. Lett. 29, 165 (2004)CrossRefGoogle ScholarPubMed
9.Schreiber, G., Hofmann, D., Grundkotter, W., Lee, Y.L., Suche, H., Quiring, V., Ricken, R., Sohler, W.: Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides. Proc. SPIE Int. Soc. Opt. Eng. 4277, 144 (2001)Google Scholar
10.Bryan, D.A., Gerson, R., Tomaschke, H.E.: Increased optical damage resistance in lithium niobate. Appl. Phys. Lett. 44, 847 (1984)CrossRefGoogle Scholar
11.Furukawa, Y., Kitamura, K., Takekawa, S., Miyamoto, A., Terao, M., Suda, N.: Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations. Appl. Phys. Lett. 77, 2494 (2000)CrossRefGoogle Scholar
12.Péter, Á., Polgár, K., Kovács, L., Lengyel, K.: Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals. J. Cryst. Growth 284, 149 (2005)CrossRefGoogle Scholar
13.Zhang, D.L., Chen, B., Liu, H.L., Cui, Y.M., Pun, E.Y.B.: Emission characteristics, crystalline phase and composition of vapor-transport-equilibrated Er:LiNbO3 crystal codoped with 6 mol% MgO. Appl. Surf. Sci. 255, 6930 (2009)CrossRefGoogle Scholar
14.Malovichko, G.I., Grachev, V.G., Yurchenko, L.P., Proshko, V.Y., Kokanyan, E.P., Gabrielyan, V.T.: Improvement of LiNbO3 microstructure by crystal growth with potassium. Phys. Status Solidi A 133, K29 (1992)CrossRefGoogle Scholar
15.Malovichko, G.I., Grachev, V.G., Kokanyan, E.P., Schirmer, O.F., Betzler, K., Gather, B., Jermann, F., Klauer, S., Schlarb, U., Wohlecke, M.: Characterization of stoichiometric LiNbO3 grown from melts containing K2O. Appl. Phys. A 56, 103 (1993)CrossRefGoogle Scholar
16.Malovichko, G.I., Cerclier, O., Estienne, J., Grachev, V., Kokayan, E., Boulesteix, C.: Lattice-constants of K-doped and Mg-doped LiNbO3—Comparison with nonstoichiometric lithium-niobate. J. Phys. Chem. Solids 56, 1285 (1995)CrossRefGoogle Scholar
17.Kitamura, K., Yamamoto, J.K., Iyi, N., Kimura, S., Hayashi, T.: Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J. Cryst. Growth 116, 327 (1992)CrossRefGoogle Scholar
18.Polgár, K., Péter, Á., Kovács, L., Corradi, G., Szaller, Zs.: Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method. J. Cryst. Growth 177, 211 (1997)CrossRefGoogle Scholar
19.Li, A.H., Zheng, Z.R., , T.Q., Sun, L., Liu, W.L., Wu, W.Z.: Influence of MgO codoping on the optical properties of Er3+-doped near-stoichiometric LiNbO3. Appl. Phys. B 98, 149 (2010)CrossRefGoogle Scholar
20.Zhang, D.L., Zhang, L.Z., Xu, C., Sun, L., Xu, Y.H., Pun, E.Y.B.: Influence of MgO-codoping on Er concentration in congruent LiNbO3 crystal: Mg threshold concentration effect. J. Mater. Res. 25, 235 (2010)CrossRefGoogle Scholar
21.Cantelar, E., Sanz-García, J.A., Cussó, F.: Growth of LiNbO3 co-doped with Er3+/Yb3+. J. Cryst. Growth 205, 196 (1999)CrossRefGoogle Scholar
22.Nakamura, M., Higuchi, S., Takekawa, S., Terabe, K., Furukawa, Y., Kitamura, K.: Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3 Jpn. J. Appl. Phys. Part 2 41, L49 (2002)CrossRefGoogle Scholar
23.Wöhlecke, M., Corradi, G., Betzler, K.: Optical methods to characterise the composition and homogeneity of lithium niobate single crystals. Appl. Phys. B 63, 323 (1996)CrossRefGoogle Scholar
24.Kovács, L., Ruschhaupt, G., Polgár, K., Corradi, G., Wöhlecke, M.: Composition dependence of the ultraviolet absorption edge in lithium niobate. Appl. Phys. Lett. 70, 2801 (1997)CrossRefGoogle Scholar
25.Dravecz, G., Kovács, L.: Determination of the crystal composition from the OH- vibrational spectrum in lithium niobate. Appl. Phys. B 88, 305 (2007)CrossRefGoogle Scholar
26.Polgár, K., Kovács, L., Földvári, I., Cravero, I.: Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals. Solid State Commun. 59, 375 (1986)CrossRefGoogle Scholar
27.Lengyel, K., Péter, Á., Polgár, K., Kovács, L., Corradi, G.: UV and IR absorption studies in LiNbO3:Mg crystals below and above the photorefractive threshold. Phys. Status Solidi C 2, 171 (2005)CrossRefGoogle Scholar
28.Lengyel, K., Kovács, L., Péter, Á., Polgár, K., Corradi, G.: The effect of stoichiometry and Mg doping on the Raman spectra of LiNbO3:Mg crystals. Appl. Phys. B 87, 317 (2007)CrossRefGoogle Scholar
29.Zhang, D.L., Wong, W.H., Pun, E.Y.B.: Characterization of vapor-transport-equilibrated Yb(/Er):LiNbO3 crystals. J. Phys. Condens. Matter 16, 7793 (2004)CrossRefGoogle Scholar
30.Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, Ch., Fleuster, M., Holzbrecher, H., Paulus, H., Muller, K-H., Gog, Th., Materlik, G., Witte, O., Stolz, H., von der Osten, W.: Erbium incorporation in LiNbO3 by diffusion-doping. Appl. Phys. A 64, 33 (1997)CrossRefGoogle Scholar
31.Liu, J.J., Zhang, W.L., Zhang, G.Y.: Defect chemistry analysis of the defect structure in Mg-doped LiNbO3 crystals. Phys. Status Solidi A 156, 285 (1996)CrossRefGoogle Scholar
32.Kovacs, L., Rebouta, L., Soares, J.C., da Silva, M.F.: Lattice site of Er in LiNbO3:Mg,Er crystals. Radiat. Eff. Defects Solids 119–121, 445 (1991)CrossRefGoogle Scholar
33.Kovacs, L., Rebouta, L., Soares, J.C., da Silva, M.F., Hage-Ali, M., Stoquert, J.P., Siffert, P., Sanz-Garcia, J.A., Corradi, G.: Zs. Szaller, and K. Polgar: On the lattice site of trivalent dopants and the structure of Mg2+–OH-–M3+ defects in LiNbO3:Mg crystals. J. Phys. Condens. Matter 5, 781 (1993)CrossRefGoogle Scholar
34.Tomita, Y., Hoshi, M., Sunarno, S.: Nonvolatile two-color holographic recording in Er-doped LiNbO3. Jpn. J. Appl. Phys. 40, L1035 (2001)CrossRefGoogle Scholar
35.Kong, Y.F., Liu, S.G., Zhao, Y.J., Liu, H.D., Chen, S.L., Xu, J.J.: Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate. Appl. Phys. Lett. 91, 081908 (2007)CrossRefGoogle Scholar
36.Veasey, D.L., Gary, J.M., Amin, J., Aust, J.A.: Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm. IEEE J. Quantum Electron. 33, 1647 (1997)CrossRefGoogle Scholar
37.Huang, C.H., McCaughan, L., Gill, D.M.: Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers. J. Lightwave Technol. 12, 803 (1994)CrossRefGoogle Scholar
38.Lázaro, J.A., Vallés, J.A., Rebolledo, M.A.: In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states. IEEE J. Quantum Electron. 35, 827 (1999)CrossRefGoogle Scholar
39.Rebolledo, M.A., Vallés, J.A., Setién, S.: In situ measurement of polarization-resolved emission and absorption cross sections of Er-doped Ti:LiNbO3 waveguides. J. Opt. Soc. Am. B 19, 1516 (2002)CrossRefGoogle Scholar
40.Lázaro, J.A., Rebolledo, M.A., Vallés, J.A.: Modeling, characterization, and experimental/numerical comparison of signal and fluorescence amplification in Ti:Er:LiNbO3 waveguides. IEEE J. Quantum Electron. 37, 1460 (2001)CrossRefGoogle Scholar
41.Judd, B.R.: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962)CrossRefGoogle Scholar
42.Ofelt, G.S.: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962)CrossRefGoogle Scholar
43.Núñez, L., Lifante, G., Cussó, F.: Polarization effects on line-strength calculations of Er3+-doped LiNbO3. Appl. Phys. B 62, 485 (1996)CrossRefGoogle Scholar
44.Amin, J., Dussardier, B., Schweizer, T., Hempstead, M.: Spectroscopic analysis of Er3+ transitions in lithium niobate. J. Lumin. 69, 17 (1996)CrossRefGoogle Scholar
45.Lomheim, T.S., DeShazer, L.G.: Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate. J. Appl. Phys. 49, 5517 (1978)CrossRefGoogle Scholar
46.Schlarb, U., Betzler, K.: Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate. Phys. Rev. B 50, 751 (1994)CrossRefGoogle ScholarPubMed
47.Shinn, M.D., Sibley, W.A., Drexhage, M.G., Brown, R.N.: Optical transitions of Er3+ ions in fluorozirconate glass. Phys. Rev. B 27, 6635 (1983)CrossRefGoogle Scholar
48.Zhang, D.L., Wang, D.C., Pun, E.Y.B.: Influence of vapor transport equilibration on spectroscopic properties of Er:LiNbO3 crystal heavily codoped with MgO. J. Appl. Phys. 97, 103524 (2005)CrossRefGoogle Scholar
49.Muňoz, J.A., Herreros, B., Lifante, G., Cussó, F.: Concentration dependence of the 1.5 μm emission lifetime of Er3+ in LiNbO3 by radiation trapping. Phys. Status Solidi A 168, 525 (1998)3.0.CO;2-J>CrossRefGoogle Scholar