Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T03:17:57.299Z Has data issue: false hasContentIssue false

Ionization-induced effects in amorphous apatite at elevated temperatures

Published online by Cambridge University Press:  31 January 2011

In-Tae Bae*
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
Yanwen Zhang
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
William J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
Manabu Ishimaru
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
Yoshihiko Hirotsu
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
Mikio Higuchi
Affiliation:
Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
*
a)Address all correspondence to this author: e-mail: [email protected]
Get access

Abstract

Electron-beam-induced effects in preamorphized Sr2Nd8(SiO4)6O2 were investigated in situ using transmission electron microscopy with 200-keV electrons at temperatures ranging from 380 to 780 K. Within the electron-irradiated area, epitaxial recrystallization was observed from the amorphous/crystalline interface toward the surface, with the rate of recrystallization increasing as temperature increased from 380 to 580 K. Structural contrast features (i.e., O deficient amorphous material), as well as recrystallization, were observed outside of the irradiation area at temperatures from 680 to 780 K. Ionization-induced processes and local nonstoichiometry induced by oxygen migration and desorption are possible mechanisms for the electron-beam- induced recrystallization and for the formation of the structural contrast features, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Weber, W.J.Roberts, F.P.: A review of radiation effects in solid nuclear waste forms. Nucl. Technol. 60, 178 1983CrossRefGoogle Scholar
2Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M.Weinberg, M.C.: Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 12, 1946 1997CrossRefGoogle Scholar
3Yamasaki, J., Takeda, S.Tsuda, K.: Elemental process of amorphization induced by electron irradiation in Si. Phys. Rev. B 65, 115213 2002CrossRefGoogle Scholar
4Ishimaru, M., Bae, I-T.Hirotsu, Y.: Electron-beam-induced amorphization in SiC. Phys. Rev. B 68, 144102 2003CrossRefGoogle Scholar
5Devanathan, R., Sickafus, K.E., Weber, W.J.Nastasi, M.: Effects of ionizing radiation in ceramics. J. Nucl. Mater. 253, 113 1998CrossRefGoogle Scholar
6Zinkle, S.J., Skuratov, V.A.Hoelzer, D.T.: On the conflicting roles of ionizing radiation in ceramics. Nucl. Instrum. Methods B 191, 758 2002CrossRefGoogle Scholar
7Zhang, Y., Lian, J., Wang, C.M., Jiang, W., Ewing, R.C.Weber, W.J.: Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3. Phys. Rev. B 72, 094112 2005CrossRefGoogle Scholar
8Benyagoub, A., Audren, A., Thomé, L.Garrido, F.: Athermal crystallization induced by electronic excitations in ion-irradiated silicon carbide. Appl. Phys. Lett. 89, 241914 2006CrossRefGoogle Scholar
9Bae, I-T., Weber, W.J., Ishimaru, M.Hirotsu, Y.: Effect of ionization rates on dynamic recovery processes during electron-beam irradiation of 6H-SiC. Appl. Phys. Lett. 90, 121910 2007CrossRefGoogle Scholar
10Bae, I-T., Zhang, Y., Weber, W.J., Higuchi, M.Giannuzzi, L.A.: Electron-beam induced recrystallization in amorphous apatite. Appl. Phys. Lett. 90, 021912 2007CrossRefGoogle Scholar
11Masubuchi, Y., Higuchi, M., Katase, H., Takeda, T., Kikkawa, S., Kodaira, K.Nakayama, S.: Oxide ion conduction in Nd9.33(SiO4)6O2 and Sr2Nd8(SiO4)6O2 single crystals grown by floating zone method. Solid State Ionics 166, 213 2004CrossRefGoogle Scholar
12Olson, G.L.Roth, J.A.: Kinetics of solid phase crystallization in amorphous silicon. Mater. Sci. Rep. 3, 1 1988CrossRefGoogle Scholar
13Bae, I-T., Ishimaru, M., Hirotsu, Y.Sickafus, K.E.: Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence. J. Appl. Phys. 96, 1451 2004CrossRefGoogle Scholar
14Ziegler, J.F., Biersack, J.P.Littmark, U.: The Stopping and Range of Ions in Solids Pergamon New York 1985Google Scholar
15Li, P., McDonald, J.F.Lu, T-M.: Densification induced dielectricproperties change in amorphous BaTiO3 thin-films. J. Appl. Phys. 71, 5596 1992CrossRefGoogle Scholar
16Jerman, M.Mergel, D.: Structural investigation of thin TiO2 films prepared by evaporation and post-heating. Thin Solid Films 515, 6904 2007CrossRefGoogle Scholar
17Heera, V., Prokert, F., Schell, N., Seifarth, H., Fukarek, W., Voelskow, M.Skorupa, W.: Density and structural changes in SiC after amorphization and annealing. Appl. Phys. Lett. 70, 3531 1997CrossRefGoogle Scholar
18Ishimaru, M., Bae, I-T., Hirotsu, Y., Matsumura, S.Sickafus, K.E.: Structural relaxation of amorphous silicon carbide. Phys. Rev. Lett. 89, 055502 2002CrossRefGoogle ScholarPubMed
19Islam, M.S., Tolchard, J.R.Slater, P.R.: An apatite for fast oxide ion conduction. Chemm. Commun. 13, 1486 2003CrossRefGoogle Scholar
20Nakayama, S., Sakamoto, M., Higuchi, M., Kodaira, K., Sato, M., Kakita, S., Suzuki, T.Itoh, K.: Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal. J. Eur. Ceram. Soc. 19, 507 1999CrossRefGoogle Scholar
21Higuchi, M., Kodaira, K.Nakayama, S.: Growth of apatite-type neodymium silicate single crystals by the floating-zone method. J. Cryst. Growth 207, 298 1999CrossRefGoogle Scholar
22Higuchi, M., Kodaira, K.Nakayama, S.: Nonstoichiometry in apatite-type neodymium silicate single crystals. J. Cryst. Growth 216, 317 2000CrossRefGoogle Scholar
23Higuchi, M., Katase, H., Kodaira, K.Nakayama, S.: Float zone growth and characterization of Pr9.33(SiO4)6O2 and Sm9.33(SiO4)6O2 single crystals with an apatite structure. J. Cryst. Growth 218, 282 2000CrossRefGoogle Scholar
24Masubuchi, Y., Higuchi, M., Katase, H., Takeda, T., Kikkawa, S., Kodaira, K.Nakayama, S.: Oxide ion conduction in Nd9.33(SiO4)6O2 and Sr2Nd8(SiO4)6O2 single crystals grown by floating zone method. Solid State Ionics 166, 213 2004CrossRefGoogle Scholar
25Knotek, M.L.: Stimulated desorption. Rep. Prog. Phys. 47, 1499 1984CrossRefGoogle Scholar
26Du, X., Takeguchi, M., Tanaka, M.Furuya, K.: Formation of crystalline Si nanodots in SiO2 films by electron irradiation. Appl. Phys. Lett. 82, 1108 2003CrossRefGoogle Scholar
27Hosono, H., Kawazoe, H.Matsunami, N.: Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation. Phys. Rev. Lett. 80, 317 1998CrossRefGoogle Scholar