Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T00:23:00.096Z Has data issue: false hasContentIssue false

Ion-beam mixing of Ni/Pd layers: I. Cascade mixing regime (low temperature)

Published online by Cambridge University Press:  31 January 2011

U. G. Akano
Affiliation:
Department of Engineering Physics and Institute for Materials Research, McMaster University, Hamilton, Ontario L8S4MI, Canada
D. A. Thompson
Affiliation:
Department of Engineering Physics and Institute for Materials Research, McMaster University, Hamilton, Ontario L8S4MI, Canada
J. A. Davies
Affiliation:
Department of Engineering Physics and Institute for Materials Research, McMaster University, Hamilton, Ontario L8S4MI, Canada
W. W. Smeltzer
Affiliation:
Department of Engineering Physics and Institute for Materials Research, McMaster University, Hamilton, Ontario L8S4MI, Canada
Get access

Abstract

A tomic mixing resulting from heavy-ion bombardment of thin-film Ni/Pd bilayers and thin Pd markers sandwiched between Ni layers has been investigated. Mixing experiments were performed over a temperature range 40–473 K, using 120 keV Ar+ and 145 keV Kr+ ions at a constant dose rate of 5.5 × 1012 ions cm −2s−1 for doses up to 4 × 1016cm−2. The resulting interdiffusion was measured, in situ, using Rutherford backscattering with 2−2.8 MeV 4He+ ions. The results showed that, for both markers and bilayers, the amount of mixing is similar for both configurations and varies linearly with the square root of the ion dose. Comparison of the induced mixing per ion, following irradiation at 40 K, shows that the mixing is dependent on the damage energy FD deposited at the interface region. The mixing is essentially athermal.

Type
Laser and Particle Beam Processing of Materials
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Averback, R. S.; Ion Implantation and Ion Beam Processing of Materials, edited by Huber, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Elsevier, New York, 1984), p. 25.Google Scholar
2Fedrizi, L., Guzman, L., Molinari, A., Girardi, S., and Bohora, P. L., Nucl. Instrum. Methods B 7/8, 711 (1985).CrossRefGoogle Scholar
3Wolf, G. K., Radiat. Eff. 65, 107 (1982).CrossRefGoogle Scholar
4Akano, U. G., Davies, J. A., Smeltzer, W. W., Tashlykov, I. S., and Thompson, D. A., Nucl. Instrum. Methods 182/183, 985 (1981).Google Scholar
5Munn, P. and Wolf, G. K., Nucl. Instrum. Methods B 7/8, 205 (1985).CrossRefGoogle Scholar
6Wang, Z. L., Nucl. Instrum. Methods B 2, 784 (1984).Google Scholar
7Westendorp, H., Wang, Z. L., and Saris, F. W., Nucl. Instrum. Methods 194, 453 (1982).CrossRefGoogle Scholar
8Paine, B. M. and Averback, R. S., Nucl. Instrum. Methods B 7/8, 666 (1985).CrossRefGoogle Scholar
9Averback, R. S., Thompson, L. J. Jr , Moyle, J., and Schalit, M., J. Appl. Phys. 53, 1342 (1982).Google Scholar
10Bottiger, J., Nielsen, S. K., and Thorsen, P. T., Nucl. Instrum Methods B 7/8, 707 (1985).CrossRefGoogle Scholar
11Matteson, S., and Nicolet, M.-A, Ann. Rev. Mater. Sci. 13, 288 (1983).Google Scholar
12Dienes, G. J. and Damask, A. C., J. Appl. Phys. 29, 1713 (1958).CrossRefGoogle Scholar
13Averback, R. S.,Nucl. Instrum. Methods B 15, 675 (1986).CrossRefGoogle Scholar
14Barz, A. J. and Nicolet, M.-A., Appl. Phys. A 33, 167 (1984).CrossRefGoogle Scholar
15Mayer, J. W., Tsaur, B. Y., Lau, S. S., and Hung, L. S., Nucl. Instrum. Methods 182/183, 1 (1981).CrossRefGoogle Scholar
16Johnson, W. L., Cheng, Y. T., Rossum, M. Van, and Nicolet, M.-A., Nucl. Instrum. Methods B 7/8, 657 (1985).CrossRefGoogle Scholar
17Wang, P., Thompson, D. A., and Smeltzer, W. W., Nucl Instrum. Methods B 7/8, 97 (1985).CrossRefGoogle Scholar
18Liu, J. C., Nastasi, M., and Mayer, J. W., J. Appl. Phys. 62, 423 (1987).Google Scholar
19Walker, R. S. and Thompson, D. A., J. Nucl. Instrum. Methods 135, 489 (1976).CrossRefGoogle Scholar
20Chu, W. K., Mayer, J. W., and Nicolet, M.-A.; Backscattering Spectrometry (Academic, New York, 1978).CrossRefGoogle Scholar
21Khannaand, S. K.Sonnenberg, K., Radiat. Eff. 59, 91 (1981).CrossRefGoogle Scholar
22Al-Tamimi, Z. Y., Grant, W. A., Carter, G., Stevanovic, D. V., and Thompson, D. A., Nucl. Instrum. Methods B 7/8, 124 (1985).CrossRefGoogle Scholar
23Chen, C. W., Phys. Status Solidi. 16, 197 (1973).CrossRefGoogle Scholar
24Anderson, H. H., Appl. Phys. 18, 131 (1979).CrossRefGoogle Scholar
25Matteson, S., Appl. Phys. Lett. 39, 288 (1981).CrossRefGoogle Scholar
26Haff, P. K. and Switkowski, Z. E., J. Appl. Phys. 48, 3383 (1977).CrossRefGoogle Scholar
27Littmark, U. and Hofer, W. O., Nucl. Instrum. Methods 168, 329 (1980).CrossRefGoogle Scholar
28Collins, R. and Carter, G., Radiat. Efif. 54, 235 (1981).CrossRefGoogle Scholar
29Hofer, W. O. and Littmark, U., Phys. Lett. A 71, 457 (1979).CrossRefGoogle Scholar
30Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 168, 389 (1980).CrossRefGoogle Scholar
31Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182/183, 25 (1981).CrossRefGoogle Scholar
32Littmark, U. and Sigmund, P., J. Phys. D 8, 241 (1975).Google Scholar
33Moller, W. and Eckstein, W., Nucl. Instrum. Methods B 7/8, 645 (1985).Google Scholar