Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T22:11:22.576Z Has data issue: false hasContentIssue false

Ion size effects on thermoluminescence of terbium and europium doped magnesium orthosilicate

Published online by Cambridge University Press:  30 October 2015

Ying Zhao
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, China
Yang Zhou
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, China
Yun Jiang
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, China
Weigong Zhou
Affiliation:
School of Great Wall, China University of Geosciences, Beijing 100083, China
Adrian A. Finch
Affiliation:
Department of Earth & Environmental Sciences, University of St Andrews, Fife KY16 9AL, United Kingdom
Peter D. Townsend
Affiliation:
Physics Building, University of Sussex, Brighton BN1 9QH, United Kingdom
Yafang Wang*
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thermoluminescence (TL) and radioluminescence (RL) are reported over the temperature range 25–673 K from MgSiO4:Tb and MgSiO4:Eu. The dominant signals arise from the transitions within the Rare Earth (RE) dopants, with limited intensity from intrinsic or host defect sites. The Tb and Eu ions distort the lattice and alter the stability of the TL sites and the peak TL temperature scales with the Tb and Eu ion size. The larger Eu ions stabilize the trapped charges more than for the Tb, and so the Eu TL peak temperatures are ∼20% higher. There are further size effects linked to the TL driven by the volume of the upper state orbitals of the rare earth transitions. For Eu the temperatures of the TL peaks are wavelength dependent since higher excited states couple to distant traps via more extensive orbits. The same pattern of peak temperature data is encoded in RL during heating. The data imply that there are sites in which the rare earth and charge stabilizing defects are closely associated within the host lattice, and the stability of the entire complex is linked to the lattice distortions from inclusions of impurities.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mckeever, S.W.S.: Thermoluminescence of Solids (Cambridge Univ. Press, Cambridge, England, 1985).CrossRefGoogle Scholar
Hashizume, T., Kato, Y., Nakajima, T., Sakamoto, H., Kotera, N., and Eguchi, S.: A new thermoluminescence dosemeter of high sensitivity using a magnesium silicate phosphor. In Proceedings of the Symposium on Advanced Radiation Detectors, IAEA-SM143/11: Vienna, Austria, 1971; p. 91.Google Scholar
Toryu, T., Sakamoto, H., Kotera, N., and Yumada, H.: Compositions dependency of thermoluminescence of new phosphors for radiation dosemetry. In Proceedings of the International Conference on Luminescence, USSR: Leningrad, 1973; p. 685.Google Scholar
Kato, K., Antoku, S., Sawada, S., and Russell, W.J.: Calibration of Mg2SiO4(Tb) thermoluminescence dosimeters for use in determining diagnostic X-doses to adult health study participants. Med. Phys. 18, 928 (1991).Google Scholar
Nakajima, T.: Optical and thermal effects on thermoluminescence response of Mg2SiO4(Tb) and CaSO=(Tm) phosphors. Health Phys. 23, 133 (1972).Google Scholar
Mittani, J.C., Prokic, M., and Yukihara, E.G.: Optically stimulated luminescence and thermoluminescence of terbium-activated silicates and aluminates. Radiat. Meas. 43, 323 (2008).CrossRefGoogle Scholar
Lakshmanan, A.R. and Vohra, K.G.: Gamma radiation induced sensitization and photo-transfer in Mg2SiO4:Tb TLD phosphor. Nucl. Instrum. Methods 159, 585 (1979).Google Scholar
Bacci, C. and Furetta, C.: Kintetics parameters in Mg2SiO4:Tb thermoluminescence material. J. Therm. Anal. 38, 1627 (1992).Google Scholar
Lakshmanan, A.R., Shinde, S.S., and Bhatt, R.C.: Ultraviolet-induced thermoluminescence and phosphorescence in Mg2SiO4:Tb. Phys. Med. Biol. 23, 952 (1978).Google Scholar
Molina, P., Prokic, M., Marcazzo, J., and Santiago, M.: Characterization of a fiberoptic radiotherapy dosimetry probe based on Mg2SiO4:Tb. Radiat. Meas. 45, 78 (2010).Google Scholar
Prokic, M. and Yukihara, E.G.: Dosimetric characteristics of high sensitive Mg2SiO4:Tb solid TL detector. Radiat. Meas. 43, 463 (2008).Google Scholar
Wang, Y., Jiang, Y., Chu, X., Xu, J., and Townsend, P.D.: Thermoluminescence response of terbium-doped magnesium orthosilicate with different synthesis conditions. Radiat. Prot. Dosim. 158, 373 (2014).Google Scholar
Townsend, P.D. and Kirsh, Y.: Spectral measurement during thermoluminescence-an essential requirement. Contemp. Phys. 30, 337 (1989).CrossRefGoogle Scholar
Luff, B.J. and Townsend, P.D.: High sensitivity thermoluminescence spectrometer. Meas. Sci. Technol. 4, 65 (1993).Google Scholar
Townsend, P.D., Yang, B., and Wang, Y.: Luminescence detection of phase transitions, local environment and nanoparticle inclusions. Contemp. Phys. 49, 255 (2008).CrossRefGoogle Scholar
Ege, A., Wang, Y., and Townsend, P.D.: Systematic errors in thermoluminescence. Nucl. Instrum. Methods Phys. Res., Sect. A 576, 411 (2007).CrossRefGoogle Scholar
Ayvacikli, M., Canimoglu, A., Karabulut, Y., Kotan, Z., Herval, L.K.S., de Godoy, M.P.F., Galvao Gabato, Y., Henini, M., and Can, N.: Radioluminescence and photoluminescence characterization of Eu and Tb doped barium stannate phosphor ceramics. J. Alloys Compd. 590, 417 (2014).Google Scholar
Kotan, Z., Ayvacikli, M., Karabulut, Y., Garcia-Guinea, J., Tormo, L., Canimoglu, A., Karali, T., and Can, N.: Solid state synthesis, characterization and optical properties of Tb doped SrSnO3 phosphor. J. Alloys Compd. 581, 101 (2013).Google Scholar
Bos, A.J.J., Prokic, M., and Brouwer, J.C.: Optically and thermally stimulated luminescence characteristics of MgO:Tb3+. Radiat. Prot. Dosim. 119, 130 (2006).Google Scholar
McKeever, S.W.S., Moscovitch, M., and Townsend, P.D.: Thermoluminescence Dosimetry Materials: Properties and Uses (Nuclear Technology Publishing, Ashford, 1995).Google Scholar
Tadaki, M., Takanobu, K., Taketsugu, S., Koji, O., and Teruhisa, K.: Thermoluminescence of laser-irradiated Mg2SiO4:Tb. Jpn. J. Appl. Phys. 43, 6172 (2004).Google Scholar
Tawara, H., Masukawa, M., Nagamatsu, A., Kitajo, K., Kumagai, H., and Yasuda, N.: Characteristics of Mg2SiO4:Tb (TLD-MSO-S) relevant for space radiation dosimetry. Radiat. Meas. 46, 709 (2011).Google Scholar
Townsend, P.D. and White, D.R.: Interpretation of rare earth thermoluminescence spectra. Radiat. Prot. Dosim. 84, 83 (1996).CrossRefGoogle Scholar
Yang, B., Townsend, P.D., and Rowlands, A.P.: Low temperature thermoluminescence of rare earth doped lanthanum fluoride. Phys. Rev. B: Condens. Matter Mater. Phys. 57, 178 (1998).Google Scholar
Karali, T., Rowlands, A.P., Townsend, P.D., Prokic, M., and Olivares, J.: Spectral comparison of Dy, Tm and Dy/Tm in CaSO4 thermoluminescent dosimeters. J. Phys. D: Appl. Phys. 31, 754 (1998).Google Scholar
Raymond, S.G. and Townsend, P.D.: The influence of rare earth ions on the low temperature thermoluminescence of Bi4Ge3O12. J. Phys.: Condens. Matter 12, 2103 (2000).Google Scholar
Townsend, P.D., Jazmati, A.K., Karali, T., Maghrabi, M., Raymond, S.G., and Yang, B.: Rare earth size effects on thermoluminescence and second harmonic generation. J. Phys.: Condens. Matter 13, 2211 (2001).Google Scholar
Yang, B. and Townsend, P.D.: Patterns of peak movement in rare earth doped lanthanum fluoride. J. Appl. Phys. 88, 6395 (2000).Google Scholar
Betts, D.S., Couturier, L., Khayrat, A.H., Luff, B.J., and Townsend, P.D.: Temperature distribution in thermoluminescence experiments. I. Experimental results. J. Phys. D: Appl. Phys. 26, 843 (1993).Google Scholar
Kitis, G. and Tuyn, J.W.N.: A simple method to correct for the temperature lag in TL glow-curve measurements. J. Phys. D: Appl. Phys. 31, 2065 (1998).Google Scholar
Stadtmann, H., Delgado, A., and Gómez-Ros, J.M.: Study of real heating profiles in routine TLD readout: Influences of temperature lags and non-linearities in the heating profiles on the glow curve shape. Radiat. Prot. Dosim. 101, 141 (2002).Google Scholar
Wang, Y. and Townsend, P.D.: Potential problems in data processing of luminescence signals. J. Lumin. 142, 202 (2013).Google Scholar
Ayvacıklı, M., Ege, A., Ekdal, E., Popovici, E-J., and Can, N.: Radioluminescence study of rare earth doped some yttrium based phosphors. Opt. Mater. 34, 1958 (2012).Google Scholar
Canimoglu, A., Garcia-Guinea, J., Karabulut, Y., Ayvacikli, M., Jorge, A., and Can, N.: Catholuminescence properties of rare earth doped CaSnO3 phosphor. Appl. Radiat. Isot. 90, 138 (2015).Google Scholar