Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T22:15:02.685Z Has data issue: false hasContentIssue false

Ion implantation, diffusion, and solubility of Nd and Er in LiNbO3

Published online by Cambridge University Press:  31 January 2011

Ch. Buchal
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum-KFA-, D-5170 Jülich, Germany
S. Mohr
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum-KFA-, D-5170 Jülich, Germany
Get access

Abstract

We have implanted Nd and Er ions into x- and z-cut LiNbO3 single crystals. Rutherford backscattering spectrometry and channeling shows the recrystallization of the host during annealing and the rare earth diffusion. Nd and Er have different solubilities and different diffusion constants in LiNbO3. The solubility is strongly temperature dependent. The diffusion is substitutional, fastest parallel to c-axis of the LiNbO3 crystal and characterized by an activation energy of approximately 3.6 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hutcheson, L. H., Integrated Optical Circuits and Components (Dekker, M., New York, 1987).Google Scholar
2Nishihara, H., Haruna, M., and Suhara, T., Optical Integrated Cir-Cuits (McGraw-Hill, New York, 1989).Google Scholar
3Hunsperger, R. G., Integrated Optics: Theory and Technology (Springer, Berlin, 1985).Google Scholar
4Räuber, A., in Current Topics in Materials Science, edited by Keldis, K. (North Holland, 1978), Vol. 1, p. 481.Google Scholar
5Schmidt, R. V. and Kaminow, I. P., Appl. Phys. Lett. 25,458 (1974).CrossRefGoogle Scholar
6Jackel, J., Rice, C. E., and Veselka, J. J., Appl. Phys. Lett. 41, 607 (1982).CrossRefGoogle Scholar
7Townsend, P. D., Rep. Progr. Phys. 5, 501 (1987).CrossRefGoogle Scholar
8Appleton, B. R., Beardsley, G. M., Farlow, G. C., and Christie, W. H., J. Mater. Res. 1, 104 (1986); Ch. Buchal, P. R. Ashley, and B. R. Appleton, J. Mater. Res. 2, 222 (1987); P. R. Ashley, W. S.C. Chang, Ch. Buchal, and D. K. Thomas, IEEE J. Light-wave Tech. 7, 855 (1989).CrossRefGoogle Scholar
9Suche, H. and Sohler, W., Optoelectronics 4, 1 (1989).Google Scholar
10Lallier, E., Pocholle, J. P., Papuchon, M., Grezes-Besset, C., Pelletier, E., de Micheli, M., Li, M. J., He, Q., and Ostrowsky, D. B., Electron. Lett. 25, 1491 (1989).CrossRefGoogle Scholar
11Sohler, W., private communication.Google Scholar
12Brinkmann, R., Buchal, Ch., Mohr, St., Sohler, W., and Suche, H., “Annealed Er-implanted single-mode LiNbO3 waveguides”, Tech. Dig. on Integr. Photonics Res. (Opt. Soc. America, Washington, DC, 1990) Postdeadline-Paper PD1, Vol. 5.Google Scholar
13 LiNbO3 purchased from Crystal Technology, Palo Alto, CA.Google Scholar
14 Model NV 3204, Eaton Semicond. Equipment, Austin, TX.Google Scholar
15Ghandi, S. K., VLSI Fabrication Principles (Wiley, New York, 1983); S. M. Sze, Semiconductors Devices (Wiley, New York, 1985); Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P. S. (Noyes, Park Ridge, 1988), p. 204 ff.Google Scholar
16Pauling, L., The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, NY, 1969).Google Scholar
17Buchal, Ch., Mantl, S., and Thomas, D. K., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 317.Google Scholar
18Sugii, K., Fukuma, M., and Iwasaki, H., J. Mater. Sci. 13, 523 (1978).CrossRefGoogle Scholar
19Bremer, T., Heiland, W., Buchal, Ch., Irmscher, R., and Stritzker, B., J. Appl. Phys. 67, 1183 (1990).CrossRefGoogle Scholar