Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T09:05:55.596Z Has data issue: false hasContentIssue false

Investigation of the viscoelasticity of human osteosarcoma cells using a shear assay method

Published online by Cambridge University Press:  01 August 2006

Yifang Cao
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Randy Bly
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Will Moore
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Zhan Gao
Affiliation:
Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854
Alberto M. Cuitino
Affiliation:
Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854
Wole Soboyejo*
Affiliation:
Princeton Institute for the Scienceand Technology of Materials (PRISM)and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper presents a shear assay method for the determination of the viscoelastic properties of biological cells. The method was applied to the measurement of the viscoelastic properties of human osteosarcoma (HOS) cells. It involves a combination of shear assay experiments and digital image correlation techniques. Following in situ observations of cell deformation during shear assay experiments, a digital image correlation (DIC) technique was used to determine the local displacement and strain fields. The creep curves were also extracted from multiple digital images that were used to extract the time dependence of local strain under constant stress conditions. The measured creep curves were well described by a generalized viscoelastic Maxwell model. The extracted elastic and viscous parameters were in good agreement with results obtained from prior studies with other techniques. The results also suggested that the nucleus is stiffer than the surrounding cytoplasm of HOS cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kapur, S., Baylink, D.J., Lau, K.H.W.: Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32, 241 (2003).CrossRefGoogle ScholarPubMed
2.Nauman, E.A., Satcher, R.L., Keaveny, T.M., Halloran, B.P., Bikle, D.D.: Osteoblasts respond to pulsatile fluid flow with short-term increase in PGE2 but no change in mineralization. J. Appl. Physiol. 90, 1849 (2001).CrossRefGoogle ScholarPubMed
3.Sikavitsas, V.I., Temeno, J.S., Mikos, A.G.: Biomaterials and bone mechanotransduction. Biomaterials 22, 2581 (2001).CrossRefGoogle ScholarPubMed
4.McGarry, J.G., Klein-Nulend, J., Mullender, M.G., Prendergast, P.J.: A comparison of strain and fluid shear stress in stimulating bone cell responses—A computational and experimental study. FASEB J. 18, 1 (2004).Google Scholar
5.Liegibel, U., Sommer, U., Bundschuh, B., Schweizer, B., Hischer, U., Lieder, A., Nawroth, P., Kasperk, C.: Fluid shear of low magnitude increases growth and expression of TGF beta 1 and adhesion molecules in human bone cells in vitro. Exp. Clin. Endocrinol. Diabetes 112, 356 (2004).Google Scholar
6.Suwanarusk, R., Cooke, B., Dondorp, A., Silamut, K., Sattabongkot, J., White, N., Udomsangpetch, R.: The deformability of red blood cells parasitized by Plasmodium falciparum and P-vivax. J. Infect. Dis. 189, 190 (2004).CrossRefGoogle ScholarPubMed
7.Vankooten, T., Schakenraad, J., Vandermei, H., Busscher, H.: Development and use of a parallel plate flow chamber for studying cellular adhesion to solid-surfaces. J. Biomed. Mater. Res. 26, 725 (1992).CrossRefGoogle Scholar
8.Cooke, B., Usami, S., Perry, I., Nash, G.: A simplified method for culture of endothelial-cells and analysis of adhesion of blood-cells under conditions of flow. Microvasc. Res. 45, 33 (1993).Google Scholar
9.Wan, Y., Yang, J., Yang, J., Bei, J., Wang, S.: Cell adhesion on gaseous plasma modified poly-(L-lactide) surface under shear stress field. Biomaterials 24, 3757 (2003).Google Scholar
10.Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).CrossRefGoogle ScholarPubMed
11.Zhu, C., Bao, G., Wang, N.: Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189 (2000).CrossRefGoogle ScholarPubMed
12.Bausch, A., Ziemann, F., Boulbitch, A., Jacobson, K., Sackmann, E.: Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75, 2038 (1998).CrossRefGoogle ScholarPubMed
13.Guilak, F., Tedrow, J., Burgkart, R.: Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781 (2000).CrossRefGoogle ScholarPubMed
14.Wu, H., Kuhn, T., Moy, V.: Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20, 389 (1998).CrossRefGoogle ScholarPubMed
15.Yamada, S., Wirtz, D., Kuo, S.: Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736 (2000).CrossRefGoogle ScholarPubMed
16.Bausch, A., Moller, W., Sackmann, E.: Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573 (1999).Google Scholar
17.Lo, C., Ferrier, J.: Electrically measuring viscoelastic parameters of adherent cell layers under controlled magnetic forces. Eur. Biophys. J. 28, 112 (1999).CrossRefGoogle ScholarPubMed
18.Van-Vliet, K., Bao, G., Suresh, S.: The biomechanics toolbox: Experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881 (2003).CrossRefGoogle Scholar
19.Shiga, H., Yamane, Y., Ito, E., Abe, K., Kawabata, K., Haga, H.: Mechanical properties of membrane surface of cultured astrocyte revealed by atomic force microscopy. Jpn. J. Appl. Phys. 39, 3711 (2000).CrossRefGoogle Scholar
20.Caille, N., Thoumine, O., Tardy, Y., Meister, J.: Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177 (2002).Google Scholar
21.Huang, H., Kamm, R.D., Lee, R.T.: Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1 (2004).CrossRefGoogle ScholarPubMed
22.Bly, R., Cao, Y., Moore, W., Soboyejo, W.: Investigation of the effects of alkane phosphonic acid/RGD coatings on cell spreading and the interfacial strength between human osteosarcoma cells and Ti-6Al-4V. Mater. Sci. Eng., C (2006, in press).Google Scholar
23.Wang, Y., Cuitino, A.M.: Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int. J. of Solids Struct. 39, 3777 (2002).Google Scholar
24.Baker, C.: Methylcellulose & sodium carboxymethylcellulose: Uses in paper conservation. Book Paper Group Ann. 1, 4 (1982).Google Scholar
25.Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H.: Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25, 232 (1985).CrossRefGoogle Scholar
26.Bruck, H.A., McNeill, S.R., Sutton, M.A., Peters, W.H.: Digital image correlation using newton-raphson method of partial differential correction. Exp. Mech. 29, 261 (1989).CrossRefGoogle Scholar
27.Vendroux, G., Knauss, W.G.: Submicron: Deformation field measurements: Part 2, Improved digital image correlation. Exp. Mech. 38, 86 (1998).Google Scholar
28.Zhou, J., Gao, Z., Cuitino, A.M., Soboyejo, W.O.: Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Mater. Sci. Eng., A 386, 118 (2004).CrossRefGoogle Scholar
29.Matthews, B., Overby, D., Alenghat, F., Karavitis, J., Numaguchi, Y., Allen, P., Ingber, D.: Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313, 758 (2004).CrossRefGoogle ScholarPubMed
30.Forgacs, G., Foty, R., Shafrir, Y., Steinberg, M.: Viscoelastic properties of living embryonic tissues: A quantitative study. Biophys. J. 74, 2227 (1998).Google Scholar
31.Soboyejo, W.: Mechanical Properties of Engineered Materials (Marcel Dekker, New York, 2003).Google Scholar
32.Givelekoglu-Scholey, G., Orr, A.W., Novak, I., Meister, J.J., Schwartz, M.A., Mogilner, A.: Model of coupled transient changes of Rac, Rho, adhesions and stress fibers alignment in endothelial cells responding to shear stress. J. Theor. Biol. 232, 569 (2005).CrossRefGoogle Scholar
33.Decave, E., Rieu, D., Dalous, J., Fache, S., Brechet, Y., Fourcade, B., Satre, M., Bruckert, F.: Shear flow-induced motility of dicytostelium discoideum cells on solid substrate. J. Cell Sci. 116, 4331 (2003).Google Scholar
34.Dong, C., Skalak, R., Sung, K.: Cytoplasmic rheology of passive neutrophils. Biorheology 28, 557 (1991).CrossRefGoogle ScholarPubMed
35.Janmey, P.A.: The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78, 763 (1998).CrossRefGoogle ScholarPubMed
36.Caille, N., Tardy, Y., Meister, J.: Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann. Biomed. Eng. 26, 409 (1998).CrossRefGoogle ScholarPubMed
37.Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., Sambongi, T.: Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253 (2000).CrossRefGoogle ScholarPubMed
38.Kataoka, N., Iwaki, K., Hashimoto, K., Mochizuki, S., Ogasawara, Y., Sato, M., Tsujioka, K., Kajiya, F.: Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proc. Natl. Acad. Sci. USA 99, 15638 (2002).CrossRefGoogle ScholarPubMed
39.Brands, D., Peters, G., Bovendeerd, P.: Design and numerical implementation of a 3-D nonlinear viscoelastic constitutive model for brain tissue during impact. J. Biomech. 37, 127 (2004).Google Scholar
40.Bosboom, E., Hesselink, M., Bouten, C.O.C., Drost, M., Baaijens, F.: Passive transverse mechanical properties of skeletal muscle under in vivo compression. J. Biomech. 34, 1365 (2001).Google Scholar
41. AFM study shows old cells lose their elasticity. APS (American Physical Society) News, May Issue, 13 1 (2004).Google Scholar
42.Suresh, S., Spatz, J., Mills, J., Micoulet, A., Dao, M., Lim, C., Beil, M., Sefferlein, T.: Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 1, 16 (2005).CrossRefGoogle ScholarPubMed