Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T10:10:13.096Z Has data issue: false hasContentIssue false

Investigation of the thermal anisotropy of unidirectional carbon fiber reinforced composite plates using optically generated thermal waves and a noncontact optical detection technique

Published online by Cambridge University Press:  03 March 2011

W. Lauriks
Affiliation:
Laboratorium voor Akoestiek en Warmtegeleiding, Departement Natuurkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
C. Desmet
Affiliation:
Laboratorium voor Akoestiek en Warmtegeleiding, Departement Natuurkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
C. Glorieux
Affiliation:
Laboratorium voor Akoestiek en Warmtegeleiding, Departement Natuurkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
J. Thoen
Affiliation:
Laboratorium voor Akoestiek en Warmtegeleiding, Departement Natuurkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Get access

Abstract

Optically generated thermal waves have been used to measure the thermal diffusivity of a unidirectional carbon fiber reinforced composite plate (CFRC) both parallel and perpendicular to the fiber direction. The optically generated thermal waves have been used in combination with a noncontact optical detection technique. The diffusivity perpendicular to the fiber direction can also be determined by attaching a pyroelectric detector to the back of the sample. The value obtained this way agrees well with the results from the optical detection technique. An anisotropy factor of about 18 has been measured for a unidirectional CFRC, which agrees well with literature values obtained with completely different techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pilling, M. W., Yates, B., Black, M. A., and Tattersall, P., J. Mater. Sci. 14, 1326 (1979).CrossRefGoogle Scholar
2Carslaw, H. S. and Jaeger, J. C., Conductivity of Heat in Solids (Oxford University Press, London, 1959).Google Scholar
3Salazar, A., Sanchez-Lavega, A., and Fernandez, J., J. Appl. Phys. 65, 4150 (1989).CrossRefGoogle Scholar
4Jackson, W. and Amer, N. M., J. Appl. Phys. 51, 3343 (1980).CrossRefGoogle Scholar
5Murphy, J. C. and Aamodt, L. C., J. Appl. Phys. 51, 4580 (1980).CrossRefGoogle Scholar
6Boccara, A. C., Fournier, D., and Badoz, J., Appl. Phys. Lett. 36, 130 (1980).CrossRefGoogle Scholar
7Olmstead, M. A., Amer, N. M., Kolm, S., Fournier, D., and Boccara, A. C., Appl. Phys. A 32, 141 (1983).CrossRefGoogle Scholar
8Kuo, P. K., Lin, M. J., Reyes, C. B., Favro, L. D., Thomas, R. L., Kim, D. S., Zhang, S-Y., Inglehart, L. J., Fournier, D., Boccara, A. C., and Yacoubi, N., Can. J. Phys. 64, 1165 (1986).CrossRefGoogle Scholar
9Kuo, P. K., Sender, E. D., Favro, L. D., and Thomas, R. L., Can. J. Phys. 64, 1168 (1986).CrossRefGoogle Scholar
10James, F. and Roos, M., MINUIT Function Minimization and Error Analysis (Cern Computer Centre Program Library nr D506, Geneva, 1986).Google Scholar