Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T18:57:44.616Z Has data issue: false hasContentIssue false

Investigation of structurally less-ordered areas in the Nb filaments of a heavily cold-rolled Cu-20 wt. % Nb in situ composite

Published online by Cambridge University Press:  03 March 2011

D. Raabe*
Affiliation:
Institut für Metallkunde und Metallphysik, Aachen, Kopernikusstr. 14, 52056 Aachen, Germany
U. Hangen
Affiliation:
Institut für Metallkunde und Metallphysik, Aachen, Kopernikusstr. 14, 52056 Aachen, Germany
*
a)Address all correspondence to this author.
Get access

Abstract

A fiber-reinforced in situ metal matrix composite (MMC) consisting of copper (Cu) and 20 mass% niobium (Nb) was produced by large strain cold rolling. The rolled MMC revealed a very high strength combined with good electrical conductivity. The microstructure of single Nb filaments was investigated employing transmission electron microscopy (TFM). In heavily rolled specimens (∊max = 99.4%) randomly arranged dislocations as well as dislocation cells were observed. Furthermore, structurally less-ordered areas were discovered, the size of which frequently extended over the entire filament width. The shrinkage of these zones during heating was directly observed in the TEM. The impact of such structurally less-ordered areas on the strength was assessed. The discovery of the degradation of structural regularity in the Nb filaments of heavily cold-worked Cu-20 wt. % Nb shows that the underlying microstructural mechanisms responsible for the high strengths observed are far from being understood and that the strain-hardening models for Cu-based in situ composites currently discussed do not yet account for all relevant microstructural features.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chakrabati, D. J. and Laughlin, D. E., Bull. Alloy Phase Diagrams 2 (4), 936 (1982).Google Scholar
2Terekhov, G. I. and Aleksandrova, L. N., Izv. Akad. Nauk SSSR, Metally 4, 210 (1984).Google Scholar
3Trybus, C. and Spitzig, W.A., Acta Metall. 37 (7), 1971 (1989).CrossRefGoogle Scholar
4Raabe, D., Ball, J., and Gottstein, G., Scripta Metall. 27, 211 (1992).Google Scholar
5Raabe, D. and Gottstein, G., J. de Phys. IV, col. C7, sup. J. de Phys. III 3, 1727 (1993).Google Scholar
6Bevk, J., Harbison, J.P., and Bell, J.L., J. Appl. Phys. 49 (12), 6031 (1978).Google Scholar
7Spitzig, W. A., Pelton, A. R., and Laabs, F.C., Acta Metall. et Mater. 35 (10), 2427 (1987).Google Scholar
8Spitzig, W. A. and Krotz, P., Scripta Metall. et Mater. 2, 1143 (1987).Google Scholar
9Raabe, D. and Heringhaus, F., Phys. Status Solidi A 142 (2), 473 (1994).Google Scholar
10Bevk, J. and Karasek, K. R., New Dev.and Appl. in Composites, edited by Kuhlmann-Wilsdorf, D. and Harrigan, W.C. (AIME, Warrendale, PA, 1979), p. 101.Google Scholar
11Karasek, K. R. and Bevk, J., J. Appl. Phys. 52 (3), 1370 (1981).CrossRefGoogle Scholar
12Spitzig, W. A., Acta Met. et Mat. 39 (6), 1085 (1991).CrossRefGoogle Scholar
13Funkenbusch, P. D. and Courtney, T. H., Acta Met. et Mat. 33 (5), 913 (1985).CrossRefGoogle Scholar
14Raabe, D. and Hangen, U., in Proc. 15th Riso Int. Symp. on Mat. Science: Numerical Prediction of Defivmation Processes anti the Behavior oj Real Materials, edited by Andersen, S. I., Bilde-Sorensen, J.B., Lorentzen, T., Pedersen, O.B., and Sorensen, N. J. (RISO Nat. Lab, Roskilde, Denmark, 1994), p. 487.Google Scholar
15Herlach, F., IEEE Trans. Magn. 24, 1049 (1988).Google Scholar
16Embury, J. D., Hill, M. A., Spitzig, W. A., and Sakai, Y., MRS Bull. 8, 57 (1993).Google Scholar
17Schneider-Mantau, H-J., IEEE Trans. Magn. 18 (6), 32 (1982).Google Scholar
18Pelton, A. R., Laabs, F.C., Spitzig, W.A.. and Cheng, C. C., Ultra- microscopy 22, 251 (1987).Google Scholar
19Heringhaus, F., Raabe, D., Kaul, L., and Gottstein, G., Metall. 47, 558 (1993).Google Scholar
20Heringhaus, F., Raabe, D., and Gottstein, G., Metall. 48, 287 (1994).Google Scholar
21Heringhaus, F., Raabe, D., Hangen, U. and Gottstein, G.Mater. Sci. Forum 157–162, 709 (1994).Google Scholar
22Jha, S. C., Delagi, R. G., Forster, J. A., and Krotz, P. D., Metal. Trans. A 24A, 15 (1993).CrossRefGoogle Scholar
23Verhoeven, J.D., Spitzig, W. A., Schmidt, F. A., Krotz, P. D., and Gibson, E.D., J. Mater. Sci. 24, 1015 (1989).CrossRefGoogle Scholar
24Chumbley, L. S., Downing, H. L., Spitzig, W. A., and Verhoeven, J. D., Mater. Sci. Eng. A117, 59 (1989).CrossRefGoogle Scholar
25Chumbley, L. S. and Laabs, F. C., Scripta Metall. 25, 2097 (1991).Google Scholar
26Luborsky, F. E., Amorphous Metallic Alloys (Buttenvortbs, London, 1983).Google Scholar
27Jones, H., Rapid Solidification of Met. and Alloys (Institute of Metalls, London, 1982).Google Scholar
28Güntherodt, H. J. and Beck, H., Glassy Metals (Springer-Verlag, Berlin, 1981), Vol. 1; ibid. (1982), Vol. 2.Google Scholar
29Wang, W.K., Iwasaki, H., Suryanarayana, G., Masumoto, T., Fukamichi, F., Syono, Y., and Goto, T., Proc. 4th Int. Conf on Rapidly Quenched Metals, Sendai, 1981, edited by Masumoto, T. and Suzuki, K. (Jap. Inst. of Metals, Sendai, RQ4, 1982), p. 663.Google Scholar
30Iwasaki, H. and Wang, W.K., Sci. Rep. Research Inst. of the Tohoku Univ. RITU 29A, 195 (1981).Google Scholar
31Seeger, A. and Frank, W., Solid State Phen. 3–4, 125 (1988)Google Scholar
32Nicolis, G. and Prigogine, I., Die Erforschung des Komplexen, R. Piper Verlag, 290 (1987).Google Scholar
33Estrin, Y. and Kubin, L.P., Res. Mechan. 23, 197 (1988).Google Scholar
34Phillipot, S.R., Yip, S., Okamoto, P. R., and Wolf, D., Mater. Interfaces, edited by Wolf, D. and Yip, S. (Chapman & Hall, 1992), Chap. 7, p. 229.Google Scholar
35Raabe, D. and Lücke, K., Mater. Sci. Forum 157–162, 597 (1994).Google Scholar
36Raabe, D. and Lücke, K., Mater. Sci. Technol. 9, 302 (1993).Google Scholar
37Raabe, D. and Lücke, K., Z. Metallk. 85, 302 (1994).Google Scholar
38Raabe, D. and Lücke, K., Mater. Sci. Technol. (1995, in press).Google Scholar
39Raabe, D., Lücke, K., and Gottstein, G., de Phys. IV, col C7 suppl. au J. de Phys. III 3, 523 (1993).Google Scholar
40Raabe, D., Phys. Status Solidi B 181, 291 (1994).Google Scholar
41Raabe, D. and Boeslau, J., Mater. Sci. Forum 157–162, 501 (1994).Google Scholar
42Raabe, D. and Lücke, K., Scripta Met. et Mater 27, 1533 (1992).Google Scholar
43Sevillano, J.G., J. de Phys. III 6, 967 (1990).Google Scholar