Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T15:09:04.908Z Has data issue: false hasContentIssue false

Investigation of Si3N4–TiN/Si3N4–Si3N4 trilayer composites with residual surface compression

Published online by Cambridge University Press:  31 January 2011

Jow-Lay Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
Feng-Chi Chou
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
Horng-Hwa Lu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
Get access

Abstract

The present study involved the fabrication of three-layered composites consisting of outer layers that contained Si3N4 and an inner layer that contained TiN in a Si3N4 matrix. Surface compressive stresses were developed upon cooling due to the relatively higher thermal expansion coefficient (CTE) in the inner layer. The flexural strength of layered Si3N4 composites was substantially greater than that of monolithic Si3N4. This was attributed to the surface compressive stress. The effects of TiN composition and inner layer thickness on the mechanical properties were investigated. Layered samples containing 20 vol.% TiN had lower flexural strength than Si3N4–10% TiN/Si3N4–Si3N4 due to the formation of microcracks in the inner layer. Crack behaviors in layered samples were affected by the residual stress, interface, and free sample surface. Both theoretical and experimental results indicated that the strength and toughness of layered composites were substantially greater than those of monolithic materials. The determination of fracture toughness in three-layered materials by the surface indentation technique should be done carefully due to the influence of residual stress.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kodama, H., Sakamoto, H., and Miyoshi, T., J. Am. Ceram. Soc. 72 (4), 551–568 (1989).CrossRefGoogle Scholar
2.Bellosi, A., and Deportu, G., Mater. Sci. Eng. A109, 357362 (1989).CrossRefGoogle Scholar
3. Tai-IL Mah and Mendiratta, M. G., Ceram. Bull. 60 (11), 1229–1231 (1989).Google Scholar
4.Huang, J. L., and Lin, C. J., J. Mater. Sci. 28, 10741080 (1993).CrossRefGoogle Scholar
5.Huang, J. L., Kuo, F. J., and Chen, S. Y., Mater. Sci. Eng. A174, 157164 (1994).CrossRefGoogle Scholar
6.Kodama, H., Suzuki, T., Sakamoto, H., and Miyoshi, T., J. Am. Ceram. Soc. 73 (3), 678–683 (1990).Google Scholar
7.Chu, C. Y., Singh, J. P., and Routbort, J. L., J. Am. Ceram. Soc. 76 (5), 1349–1353 (1993).Google Scholar
8.Xu, H. H. K., Ostertag, C. P., and Braun, L. M., J. Am. Ceram. Soc. 77 (7), 1897–1900 (1993).Google Scholar
9.Shin, D. W., and Tanaka, H., J. Am. Ceram. Soc. 77 (1), 97–104 (1994).CrossRefGoogle Scholar
10.Hermer, M. P., Chan, H. M., and Miller, G. A., J. Am. Ceram. Soc. 75 (7), 1715–1728 (1992).Google Scholar
11.Marshall, D. B., Ratto, J. J., and Lange, F. F., J. Am. Ceram. Soc. 74 (12), 2979–2987 (1991).CrossRefGoogle Scholar
12.Virkar, A. V., Huang, J. L., and Cutler, R. A., J. Am. Ceram. Soc. 70 (3), 164–170 (1987).CrossRefGoogle Scholar
13.Marshall, D. B., and Ratto, J. J., J. Am. Ceram. Soc. 74 (12), 2979–2987 (1991).CrossRefGoogle Scholar
14.Requena, J., Moreno, R., and Moya, J. S., J. Am. Ceram. Soc. 74 (12), 1511–1513 (1989).Google Scholar
15.Marshall, D. B., Am. Ceram. Soc. Bull. 71 (6), 969–973 (1992).Google Scholar
16.Moya, J. S., Sanchez-Herencia, A. J., Requena, J., and Moreno, R., J. Mater. Lett. 14, 333335 (1992).CrossRefGoogle Scholar
17.Abe, O. and Yamada, Jun-ichi, J. Ceram. Soc. Jpn. 102, 627631 (1994).CrossRefGoogle Scholar
18.Bellosi, A., Fiegna, A., Giachello, A., and Demaestri, P., Advanced Structural Inorganic Composites, edited by P., Vincenzini (Elsevier Science Publishers B.V., 1991), p. 225.Google Scholar
19.Huang, J. L., Chen, S. Y., and Lee, M. T., J. Mater. Res. 9, 23492354 (1994).CrossRefGoogle Scholar
20.Smith, A., Abed, A., Edrees, H. J., and Hendry, A., Key Engineering Ceramics, edited by S., Hampshire (Elsevier Applied Science, 1986), p. 423.Google Scholar
21.Huang, J. L., Lee, M. T., Lu, H. H., and Lii, D. F., “Microstructure, Fracture Behavior and Mechanical Properties of TiN/Si3N4 Composites,” J. Mater. Chem. Phys. (1995).CrossRefGoogle Scholar
22.Cutler, R. A., and Virkar, A. V., J. Mater. Sci., 3557–3573 (1985).CrossRefGoogle Scholar
23.Pascoe, R. T., and Garvie, R. C., in Ceramic Microstructure '76, edited by Fuir, R. M., and Pask, J. A. (Westview Press, Boulder, CO, 1977), pp. 774784.Google Scholar
24.Kohasaka, S., Nakanishi, M., and Koga, K., J. Ceram. Soc. Jpn. 100 (4), 468–471 (1992).Google Scholar
25.Virkar, A. V., Jue, J. F., Hansen, J. J., and Cutler, R. A., J. Am. Ceram. Soc. 71 (3), C148–C151 (1988).CrossRefGoogle Scholar
26.Cutler, R. A., and Bright, J. D., J. Am. Ceram. Soc. 70 (10), 714–718 (1987).CrossRefGoogle Scholar
27.Hansen, J. J., Cutler, R. A., Shetty, D. K., and Virkar, A. V., J. Am. Ceram. Soc. 71 (12), C501–C505 (1988).CrossRefGoogle Scholar
28.Torti, M. T., Jr., and Richerson, D. W., “High Strength Composite Ceramic Structure,” U.S. Pat. No. 3,911,188, Oct. 7, 1975.Google Scholar
29.Lakshminarayanan, R., Shetty, D. K., and Cutler, R. A., J. Am. Ceram. Soc. 79 (1), 79–87, (1996).CrossRefGoogle Scholar
30.Evans, A. G., and Charles, A., J. Am. Ceram. Soc. 59 (7–8), 371–372 (1976).CrossRefGoogle Scholar
31. Yu. Gogotsi, G., and Grathwohl, G., J. Mater. Sci. 28, 42794287 (1993).CrossRefGoogle Scholar
32.Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64 (9), 533–538 (1981).CrossRefGoogle Scholar
33.Marshall, D. B., and Lawn, B. R., J. Am. Ceram. Soc. 64 (9), 533–538 (1981).Google Scholar
34.Ikuma, Y., and Virkar, A. V., J. Mater. Sci., 2233–2238 (1984).Google Scholar