Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T00:34:53.021Z Has data issue: false hasContentIssue false

Investigation of quantum well and tunnel barrier growth by resonant tunneling

Published online by Cambridge University Press:  31 January 2011

M.A. Reed
Affiliation:
Central Research Laboratory, Texas Instruments Incorporated. Dallas, Texas 75265
J.W. Lee
Affiliation:
Central Research Laboratory, Texas Instruments Incorporated. Dallas, Texas 75265
R.K. Aldert
Affiliation:
Central Research Laboratory, Texas Instruments Incorporated. Dallas, Texas 75265
A.E. Wetsel
Affiliation:
Central Research Laboratory, Texas Instruments Incorporated. Dallas, Texas 75265
Get access

Abstract

We present the first known systematic mapping of quantum well and tunnel barrier thicknesses in a resonant tunneling structure by transport measurements. The technique derives a 1 Å averaged resolution for quantum well and barrier thicknesses, independently for the quantum well and adjacent tunnel barriers. Contour maps of the structure reveal an asymmetric shallow ring growth structure for one of the epilayers. Current-voltage characteristics and temperature dependence of the resonant tunneling structures will also be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chang, L. L., Esaki, L., and Tsu, R., Appl. Phys. Lett. 24, 593 (1974).Google Scholar
2Sollner, T. C. L. G., Goodhue, W. D., Tannenwald, P. E., Parker, C. D., and Peck, D. D., Appl. Phys. Lett. 43, 588 (1983).Google Scholar
3Bonnefoi, A. R., Collins, R. T., McGill, T. C., Burnham, R. D., and Ponce, F. A., Appl. Phys. Lett. 46, 285 (1985).CrossRefGoogle Scholar
4Shewchuk, T. J., Chapin, P. C., Coleman, P. D., Kopp, W., Fisher, R., and Morkc, H., Appl. Phys. Lett. 46, 508 (1985).Google Scholar
5Sollner, T. C. L. G., Le, H. Q., Correa, C. A., and Goodhue, W. D., Appl. Phys. Lett. 45, 1319 (1984).Google Scholar
6Tsu, R. and Esaki, L., Appl. Phys. Lett. 22, 562 (1973).CrossRefGoogle Scholar
7Simmons, J. G., J. Appl. Phys. 34, 1793 (1963).Google Scholar
8Ricco, B. and Azbel, M. Ya, Phys. Rev. B 29, 1970 (1984).Google Scholar
9Luryi, S., Appl. Phys. Lett. 47, 490 (1985).Google Scholar
10Cho, A. Y. and Cheng, K. Y., Appl. Phys. Lett. 38, 360 (1981).CrossRefGoogle Scholar
11Bonnefoi, A. R., McGill, T. C., and Burnham, R. D., Appl. Phys. Lett. 47, 307 (1985).Google Scholar
12The largest lateral distance between data points of Ref. 11 is 16% of the larger cleaved side of Fig. 3.Google Scholar
13Following submission of this paper, a value of 2.2:1 was reported (H. Sakaki, 1985 IEDM Tech. Dig.).Google Scholar