Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T20:07:49.317Z Has data issue: false hasContentIssue false

Investigation of micro-yield strength and coefficient of thermal expansion of Al–Cu–Mg–Li–Sc–Ag alloys with various contents of Li

Published online by Cambridge University Press:  11 April 2019

Ruibin Yang
Affiliation:
School of Physics and Engineering, Key Lab of Materials Physics,Zhengzhou University, Zhengzhou, Henan Province 450052, China
Junrui Yang
Affiliation:
School of Physics and Engineering, Key Lab of Materials Physics,Zhengzhou University, Zhengzhou, Henan Province 450052, China
Kun Xie
Affiliation:
School of Physics and Engineering, Key Lab of Materials Physics,Zhengzhou University, Zhengzhou, Henan Province 450052, China
Zhongxia Liu*
Affiliation:
School of Physics and Engineering, Key Lab of Materials Physics,Zhengzhou University, Zhengzhou, Henan Province 450052, China
Guotao Zhang
Affiliation:
School of Physics and Engineering, Key Lab of Materials Physics,Zhengzhou University, Zhengzhou, Henan Province 450052, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, the effects of lithium(Li) content (1.0, 1.5, 2.0, and 2.5 wt%) on the microstructure, micro-yield strength (MYS) and coefficient of thermal expansion (CTE) of Al–Cu–Mg–Li–Sc–Ag alloys were investigated. The results showed that increased Li content promoted the formation of primary T1 phases and secondary T1 precipitates. While the primary T1 phases decreased the MYS of the Al–Cu–Mg–Li–Sc–Ag alloys due to large residual stress and stress concentration, secondary T1 precipitates increased the MYS due to their excellent pinning and impeding effect on mobile dislocations. In addition, the increase in Li content caused the CTETT (i.e., CTE transition temperature) first increased and then decreased, while the CTEH (CTETT to 300 °C) of alloys to first decrease and then increase. The CTEH and CTETT values were influenced by the MYS rather than by the macro-yield strength of alloys, arising from the differences in the amounts of the T1 precipitates among the four tested alloys; this was due to the superior thermal stability of the T1 precipitates.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tolga, D. and Costas, S.: Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862 (2014).Google Scholar
Wu, W.T., Liu, Z.L., Hu, Y.C., Li, F.D., Bai, S., Xia, P., Wang, A., and Ye, C.W.: Goss texture intensity effect on fatigue crack propagation resistance in an Al–Cu–Mg alloy. J. Alloys Compd. 703, 318 (2018).Google Scholar
Wang, X.F., Wu, G.H., Sun, D.L., Qin, C.J., and Tian, Y.L.: Micro-yield property of sub-micron Al2O3 particle reinforced 2024 aluminum matrix composite. Mater. Lett. 58, 333 (2004).CrossRefGoogle Scholar
Song, Y.F., Ding, X.F., Xiao, L.R., Zhao, X.J., Cai, Z.Y., Guo, L., Li, Y.W., and Zheng, Z.Z.: Effects of two-stage aging on the dimensional stability of Al–Cu–Mg alloy. J. Alloys Compd. 701, 508 (2017).CrossRefGoogle Scholar
Wada, S., Mabuchi, M., Higashi, K., and Langdon, T.G.: A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity. J. Mater. Res. 11, 1755 (1996).CrossRefGoogle Scholar
Dong, Y.B., Shao, W.Z., Jiang, J.T., Chao, D.Y., and Zhen, L.: Influence of quenching rate on microstructure and dimensional stability of Al–Cu–Mg–Si alloy. Mater. Sci. Technol. 32, 1861 (2016).CrossRefGoogle Scholar
Song, Y.F., Ding, X.F., Zhao, X.J., Xiao, L.R., and Guo, L.: The effect of stress-aging on dimensional stability behavior of Al–Cu–Mg alloy. J. Alloys Compd. 718, 298 (2017).CrossRefGoogle Scholar
Qu, S.G., Lou, H.S., Li, X.Q., Kuang, T.R., and Lou, J.Y.: Effect of heat-treatment on stress relief and dimensional stability behavior of SiCp/Al composite with high SiC content. Mater. Des. 86, 508 (2015).CrossRefGoogle Scholar
Cui, Y., Wang, L.F., and Ren, J.Y.: Multi-functional SiC/Al composites for aerospace applications. Chin. J. Aeronaut. 21, 578 (2008).Google Scholar
Zhang, F., Sun, P.F., Li, X.C., and Zhang, G.D.: An experimental study on deformation behavior below 0.2% offset yield stress in some SiCp/Al composites and their unreinforced matrix alloys. Mater. Sci. Eng., A 300, 12 (2001).CrossRefGoogle Scholar
Liu, G.J., Li, W.F., Peng, J.H., and Jun, D.U.: Micro-yield behaviors of Al2O3–SiO2(sf)/Al–Si metal matrix composites. Trans. Nonferrous Met. Soc. China 17, 307 (2007).CrossRefGoogle Scholar
Wang, X., Wu, S., Wang, C.C., Jiang, L.T., Wu, G.H., and Jiang, D.M.: Effect of heat treatment process on microstructure and dimensional stability of 2A12 aluminum alloy. Trans. Mater. Heat Treat. 34, 41 (2013).Google Scholar
Huber, T., Degischer, H.P., Lefranc, G., and Schmitt, T.: Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles. Compos. Sci. Technol. 66, 2206 (2006).CrossRefGoogle Scholar
Lotfy, A., Pozdniakov, A.V., Zolotorevskiy, V.S., El-khair, M.A., Daoud, A., and Mochugovskiy, A.G.: Novel preparation of Al–5% Cu/BN and Si3N4 composites with analyzing microstructure, thermal and mechanical properties. Mater. Charact. 136, 144 (2018).CrossRefGoogle Scholar
El-Gallab, M. and Sklad, M.: Machining of Al/SiC particulate metal matrix composites: Part II: Workpiece surface integrity. J. Mater. Process. Technol. 83, 277 (1998).CrossRefGoogle Scholar
Stadler, F., Antrekowitsch, H., Fragner, W., Kaufmann, H., Pinatel, E.R., and Uggowitzer, P.J.: The effect of main alloying elements on the physical properties of Al–Si foundry alloys. Mater. Sci. Eng., A 560, 481 (2013).CrossRefGoogle Scholar
Chen, Z.W., Zhao, K., and Fan, L.: Combinative hardening effects of precipitation in a commercial aged Al–Cu–Li–X alloy. Mater. Sci. Eng., A 588, 59 (2013).CrossRefGoogle Scholar
Deschamps, A., Garcia, M., Chevy, J., Davo, B., and De Geuser, F.: Influence of Mg and Li content on the microstructure evolution of Al–Cu–Li alloys during long-term aging. Acta Mater. 122, 32 (2017).CrossRefGoogle Scholar
Yang, R.B., Zhi, Q., Wang, F.Z., Zhang, Y.J., Liu, Z.X., Wang, J.F., and Cao, Y.J.: Effects of enhanced solution treatment on microstructure and mechanical properties of Al–Cu–Li–Sc alloy. Mater. Sci. Technol. 34, 1201 (2018).CrossRefGoogle Scholar
Langan, T.J. and Pickens, J.R.: Identification of strengthening phases in Al–Cu–Li alloy Weldatite TM 049. Aluminum–lithium alloys. In Proceedings of Fifth International Al–Li Conference , T.H. Sanders and E.A Starke, eds. (MCE Publications Ltd., Birmingham, U.K., 1989); p. 691.Google Scholar
Montoya, K.A., Heubaum, F.H., Kumar, K.S., and Pickens, J.R.: Compositional effects on the solidus temperature of an Al–Cu–Li–Ag–Mg alloy. Scr. Metall. Mater. 25, 1489 (1991).CrossRefGoogle Scholar
Gao, W., Xu, J., Teng, J., and Lu, Z.: Microstructure characteristics and mechanical properties of a 2A66 Al–Li alloy processed by continuous repetitive upsetting and extrusion. J. Mater. Res. 31, 2506 (2016).CrossRefGoogle Scholar
Bogno, A.A., Valloton, J., Henein, H., Ivey, D.G., Locock, A.J., and Gallerneault, M.: Effects of scandium on hypoeutectic aluminium copper microstructures under low solidification rate conditions. Can. Metall. Q. 57, 148 (2018).CrossRefGoogle Scholar
Jia, M., Zheng, Z., and Gong, Z.: Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J. Alloys Compd. 614, 131 (2014).CrossRefGoogle Scholar
Gazizov, M., Teleshov, V., Zakharov, V., and Kaibyshev, R.: Solidification behaviour and the effects of homogenisation on the structure of an Al–Cu–Mg–Ag–Sc alloy. J. Alloys Compd. 509, 9497 (2011).CrossRefGoogle Scholar
Tolley, A., Radmilovic, V., and Dahmen, U.: Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys. Scr. Mater. 52, 621 (2005).CrossRefGoogle Scholar
Nayan, N., Nair, K.S., Mittal, M.C., and Sudhakaran, K.N.: Studies on Al–Cu–Li–Mg–Ag–Zr alloy processed through vacuum induction melting (VIM) technique. Mater. Sci. Eng., A 454, 500 (2007).CrossRefGoogle Scholar
Li, J., Liu, P., Chen, Y., Zhang, X.H., and Zheng, Z.Q.: Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2–3.8) Cu–(1.0–1.4) Li alloys. Trans. Nonferrous Met. Soc. China 25, 2103 (2015).CrossRefGoogle Scholar
Huang, B.P. and Zheng, Z.Q.: Effects of Li content on precipitation in Al–Cu–(Li)–Mg–Ag–Zr alloys. Scr. Mater. 38, 357 (1998).CrossRefGoogle Scholar
Wu, L., Li, X., Han, G., Ma, N., and Wang, H.: Precipitation behavior of the high-Li-content in situ TiB2/Al–Li–Cu composite. Mater. Charact. 132, 215 (2017).CrossRefGoogle Scholar
Kumar, K.S. and Heubaum, F.H.: The effect of Li content on the natural aging response of Al–Cu–Li–Mg–Ag–Zr alloys. Acta Mater. 45, 2317 (1997).CrossRefGoogle Scholar
Zhang, F., Sun, P., Li, X., and Zhang, G.: A comparative study on microplastic deformation behavior in a SiCp/2024Al composite and its unreinforced matrix alloy. Mater. Lett. 49, 69 (2001).CrossRefGoogle Scholar
Yang, F. and Wu, C.H.: A study on micro-plastic deformation behavior of 2024 A1 alloy. Acta Metall. Sin. 13, 502 (2009).Google Scholar
Prasad, N.W. and Ramachandran, T.R.: Phase Diagrams and Phase Reactions in Al–Li alloys[M]//Aluminum–Lithium Alloys (Butterworth-Heinemann Elsevier Ltd., Oxford, U.K., 2014); p. 61.CrossRefGoogle Scholar
Adrien, J., Maire, E., Estevez, R., Ehrstrom, J.C., and Warner, T.: Influence of the thermomechanical treatment on the microplastic behaviour of a wrought Al–Zn–Mg–Cu alloy. Acta Mater. 52, 1653 (2004).CrossRefGoogle Scholar
Yang, J.R., Wang, L., Tan, X.R., Zhi, Q., Yang, R.B., Zhang, G.P., Liu, Z.X., Ge, X.H., and Liang, E.J.: Effect of sintering temperature on the thermal expansion behavior of ZrMgMo3O12p/2024Al composite. Ceram. Int. 44, 10744 (2018).CrossRefGoogle Scholar
Peng, Y., Chen, A., Zhang, L., Liu, W., and Wu, G.: Effect of solution treatment on microstructure and mechanical properties of cast Al–3Li–1.5Cu–0.2Zr alloy. J. Mater. Res. 31, 1124 (2016).CrossRefGoogle Scholar
Benal, M.M. and Shivanand, H.K.: Influence of heat treatment on the coefficient of thermal expansion of Al (6061) based hybrid composites. Mater. Sci. Eng., A 435, 745 (2006).CrossRefGoogle Scholar
Balducci, E., Ceschini, L., Messieri, S., Wenner, S., and Holmestad, R.: Thermal stability of the lightweight 2099 Al–Cu–Li alloy: Tensile tests and microstructural investigations after overaging. Mater. Des. 119, 54 (2017).CrossRefGoogle Scholar
Bonfield, W. and Datta, P.K.: Precipitation hardening in an Al–Cu–Si–Mg alloy at 130 to 220° C. J. Mater. Sci. 11, 1661 (1976).CrossRefGoogle Scholar
Kellington, S.H., Loveridge, D., and Titman, T.M.: The lattice parameters of some alloys of lithium. J. Phys. D: Appl. Phys. 2, 1162 (1969).CrossRefGoogle Scholar
Hallstedt, B.: Molar volumes of Al, Li, Mg and Si. Calphad 31, 292 (2007).CrossRefGoogle Scholar
Singh, V. and Gokhale, A.A.: Melting and Casting of Aluminum–Lithium Alloys[M]//Aluminum–Lithium Alloys (Butterworth-Heinemann Elsevier Ltd., Oxford, U.K., 2014); p. 167.CrossRefGoogle Scholar
Wu, L., Chen, Y., Li, X., Ma, N., and Wang, H.: Rapid hardening during natural aging of Al–Cu–Li based alloys with Mg addition. Mater. Sci. Eng., A 743, 741 (2019).CrossRefGoogle Scholar
Liao, H.C., Sun, Y., and Sun, G.X.: Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Mater. Sci. Eng., A 335, 62 (2002).CrossRefGoogle Scholar
Gilmore, D.L. and Starke, E.A.: Trace element effects on precipitation processes and mechanical properties in an Al–Cu–Li alloy. Metall. Mater. Trans. A 28, 1399 (1997).CrossRefGoogle Scholar
Edeson, R.L., Aglietti, G.S., and Tatnall, A.R.L.: Dimensional stability of materials subject to random vibration. Precis. Eng. 37, 323 (2013).CrossRefGoogle Scholar
Cheng, Y., Liang, Y., Mao, Y., Ge, X., Yuan, B., Guo, J., and Liang, E.: A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence. Mater. Res. Bull. 85, 176 (2017).CrossRefGoogle Scholar
Uju, W.A. and Oguocha, I.N.A.: Thermal cycling behaviour of stir cast Al–Mg alloy reinforced with fly ash. Mater. Sci. Eng., A 526, 100 (2009).CrossRefGoogle Scholar