Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T09:20:01.887Z Has data issue: false hasContentIssue false

Investigation of erosion properties of directionally solidified Fe–B alloy in various velocities liquid zinc

Published online by Cambridge University Press:  24 April 2017

Guangzhu Liu*
Affiliation:
College of Materials Science and Engineering, Liaoning Technical University, Fu xin, Liaoning Province 123000, People’s Republic of China
Jiandong Xing
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, People’s Republic of China
Shengqiang Ma
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, People’s Republic of China
Yong Wang
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, People’s Republic of China
Wenqian Guan
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The erosion behavior of a directionally solidified Fe–B alloy containing 3.5 wt% B in the different velocities of flowing liquid zinc is investigated by X-ray diffraction and scanning electron microscopy to clarify the effect of interaction between Fe2B and the erosion products on erosion performance using a rotating-disk technique. The results indicate that the Fe–B alloy erodes at a low and steady rate in flowing liquid zinc. The microstructure of erosion layers of the directionally solidified Fe–B alloy depends on the orientation relation between the growth direction of Fe2B phase and the erosion surface. When the growth direction of Fe2B is perpendicular to the erosion surface, the Fe2B and the erosion compounds form a compact and stable combining layer that effectively inhibits the erosion of flowing liquid zinc and further improves the erosion resistance of Fe–B alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Scheid, A., Schreiner, W.H., and D’Oliveira, A.S.C.M.: Effect of temperature on the reactivity between a CoCrMoSi alloy and 55 wt% AlZn baths. Corros. Sci. 55, 363 (2012).CrossRefGoogle Scholar
Ke, J.H., Chuang, H.Y., Shih, W.L., and Kao, C.R.: Mechanism for serrated cathode is solution in Cu/Sn/Cu interconnect under electron current stressing. Acta Mater. 60(5), 20822090 (2012).CrossRefGoogle Scholar
Hémery, S., Auger, T., Courouau, J.L., and Balbaud-Célérier, F.: Liquid metal embrittlement of an austenitic stainless steel in liquid sodium. Corros. Sci. 83, 1 (2014).CrossRefGoogle Scholar
Kondo, M., Takahashi, M., Tanaka, T., Tsisar, V., and Murogac, T.: Compatibility of reduced activation ferritic martensitic steel JLF-1 with liquid metals Li and Pb–17Li. Fusion Eng. Des. 87(10), 1777 (2012).CrossRefGoogle Scholar
Liu, X.B., Barbero, E., Xu, J., Burris, M., Chang, K.M., and Sikka, V.: Liquid metal corrosion of 316L, Fe3Al, and Fe–Cr–Si in molten Zn–Al baths. Metall. Mater. Trans. A 36, 2049 (2005).CrossRefGoogle Scholar
Tang, N., Li, Y.P., Koizumi, Y., Kurosu, S., and Chiba, A.: Experimental and theoretical research on interfacial reaction of solid Co with liquid Al. Corros. Sci. 73, 54 (2013).CrossRefGoogle Scholar
Wang, W.J., Lin, J.P., Wang, Y.L., and Chen, G.L.: The corrosion of intermetallic alloys in liquid zinc. J. Alloys Compd. 428, 237 (2007).CrossRefGoogle Scholar
Dong, Y.C., Yan, D.R., He, J.N., Zhang, J.X., and Li, X.Z.: Degradation behaviour of ZrO2–Ni/Al gradient coatings in molten Zn. Surf. Coat. Technol. 201, 2455 (2006).CrossRefGoogle Scholar
Tsipas, D.N. and Perez-Perez, C.: A boronizing treatment for low-carbon steels. J. Mater. Sci. Lett. 1, 298 (1982).CrossRefGoogle Scholar
Rus, J., Leal, C.L.D., and Tsipas, D.N.: Boronizing of 304 steel. J. Mater. Sci. Lett. 4, 558 (1985).CrossRefGoogle Scholar
Stergioudis, G.: Formation of boride layers on steel substrates. Cryst. Res. Technol. 41, 1002 (2006).CrossRefGoogle Scholar
Palombarini, G. and Carbucicchio, M.: High boron phases on borided iron and iron alloys. J. Mater. Sci. Lett. 4, 170 (1985).CrossRefGoogle Scholar
Carbucicchio, M., Palombarini, G., and Sambogna, G.: Surface iron–boron reaction products on low-alloy substrates. Hyperfine Interact. 41, 617 (1988).CrossRefGoogle Scholar
Tsipas, D.N. and Rus, J.: Boronizing of alloy steels. J. Mater. Sci. Lett. 6, 118 (1987).CrossRefGoogle Scholar
Tsipas, D.N., Triantafyllidis, G.K., Kiplagat, J.K., and Psillaki, P.: Degradation behaviour of boronized carbon and high alloy steels in molten aluminium and zinc. Mater. Lett. 37, 128 (1998).CrossRefGoogle Scholar
Gordon, A.P., Trexler, M.D., Neu, R.W., Sanders, T.J. Jr, and McDowell, D.L.: Corrosion kinetics of a directionally solidified Ni-base superalloy. Acta Mater. 55, 337 (2007).CrossRefGoogle Scholar
Osórioa, W.R., Peixoto, L.C., Moutinho, D.J., Gomes, L.G., Ferreira, I.L., and Garcia, A.: Corrosion resistance of directionally solidified Al–6Cu–1Si and Al–8Cu–3Si alloys castings. Mater. Des. 32, 3832 (2011).CrossRefGoogle Scholar
Chen, X.D., Li, Q., Xiao, C.B., and Ren, W.P.: Effect of salt-coating hot corrosion on stress-rupture properties of a corrosion resistant directionally solidified superalloy. Mater. Sci. Forum 747–748, 502 (2013).CrossRefGoogle Scholar
Osórioa, W.R., Spinelli, J.E., Afonso, C.R.M., Peixoto, L.C., and Garcia, A.: Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn–Cu solder alloy. Electrochim. Acta 56, 8891 (2011).CrossRefGoogle Scholar
Freitas, E.S., Spinelli, J.E., Casteletti, L.C., and Garcia, A.: Microstructure-wear behavior correlation on a directionally solidified Al–In monotectic alloy. Tribol. Int. 66, 182 (2013).CrossRefGoogle Scholar
Wang, W.J., Lin, J.P., Wang, Y.L., and Chen, G.L.: The corrosion of Fe3Al alloy in liquid zinc. Corros. Sci. 49, 1340 (2007).CrossRefGoogle Scholar
Tang, N., Li, Y.P., Kurosu, S., Koizumi, Y., Matsumoto, H., and Chiba, A.: Interfacial reactions of solid Co and solid Fe with liquid Al. Corros. Sci. 60, 32 (2012).CrossRefGoogle Scholar
Ma, S.Q., Xing, J.D., Fu, H.G., Yi, D.W., Zhi, X.H., and Li, Y.F.: Effects of boron concentration on the corrosion resistance of Fe–B alloys immersed in 460 °C molten zinc bath. Surf. Coat. Technol. 204, 2208 (2010).CrossRefGoogle Scholar
Ma, S.Q., Xing, J.D., Yi, D.W., Fu, H.G., and Liu, G.F.: Microstructure and corrosion behavior of cast Fe–B alloys dipped into liquid zinc bath. Mater. Charact. 61, 866 (2010).CrossRefGoogle Scholar
Ma, S.Q., Xing, J.D., Fu, H.G., He, Y.L., Bai, Y., Li, Y.F., and Bai, Y.P.: Interface characteristics and corrosion behaviour of oriented bulk Fe2B alloy in liquid zinc. Corros. Sci. 78, 71 (2014).CrossRefGoogle Scholar
Marder, A.R.: The metallurgy of zinc-coated steel. Prog. Mater. Sci. 45, 191 (2000).CrossRefGoogle Scholar
Verma, A.R.B. and Van Ooij, W.J.: High-temperature batch hot-dip galvanizing. Part 1. General description of coatings formed at 560 °C. Surf. Coat. Technol. 89, 132 (1997).CrossRefGoogle Scholar
Peng, B.C., Wang, J.H., Su, X.P., Li, Z., and Yin, F.C.: Effects of zinc bath temperature on the coatings of hot-dip galvanizing. Surf. Coat. Technol. 202, 1785 (2008).Google Scholar
Giorgl, M.L., Durighello, P., and Nicolle, R.: Dissolution kinetics of iron in liquid zinc. J. Mater. Sci. 39, 5803 (2004).CrossRefGoogle Scholar
Dybkov, V.I.: Reaction Diffusion and Solid State Chemical Kinetics, 1st ed. (The IPMS Publications, Kyiv, Ukraine, 2002); pp. 215217.Google Scholar
Cussler, E.L.: Diffusion Mass Transfer in Fluid Systems, 3rd ed. (Cambridge Univ. Press, New York, America, 2007); p. 293.Google Scholar
Assael, M.J., Armyra, I.J., Brillo, J., Stankus, S.V., Wu, J.T., and Wakeham, W.A.: Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J. Phys. Chem. Ref. Data 4, 033101 (2012).CrossRefGoogle Scholar
Niinomi, M., Ueda, Y., and Sano, M.: Dissolution of ferrous alloys into molten aluminium. Trans. Jpn. Inst. Met. 23, 780 (1982).CrossRefGoogle Scholar