Article contents
Interfacial stability and mechanical properties of Al2O3 fiber reinforced Ti matrix composites
Published online by Cambridge University Press: 03 March 2011
Abstract
The mechanical properties of the interfaces in an Al2O3 fiber reinforced β-21S Ti alloy have been evaluated by using fiber pushout tests. The Al2O3 fibers were coated with a refractory metal and Y2O3 which served as a diffusion barrier during the HIPing used to produce the metal matrix composites. By doing fiber pushout tests, the interfacial fracture was found to occur at the interface between the refractory metal and the Y2O3. The interfacial shear strength and interfacial frictional stress were measured to be 323 and 312 ± 2 MPa, respectively. The interfacial frictional stress, which is due to asperity interlocking during the fiber sliding, was correlated to the surface roughness of the coated Al2O3 fiber obtained with the aid of an atomic force microscope. The measured surface roughness of 18.8 ± 2.2 nm was related to the frictional stress through Hutchinson's model.9 The frictional coefficient between the Al2O3 fiber and the Ti matrix is calculated to be 0.32 ± 0.02.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
- 11
- Cited by