Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T09:29:26.887Z Has data issue: false hasContentIssue false

Interfacial reactions of Co/Si0.76Ge0.24 and Co(Si0.76Ge0.24)/Si0.76Ge0.24 by pulsed KrF laser annealing

Published online by Cambridge University Press:  31 January 2011

Jian-Shing Luo
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Yu-Lin Hang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
Wen-Tai Lin*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
C. Y. Chang
Affiliation:
Department of Electronic Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
P. S. Shih
Affiliation:
Department of Electronic Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Interfacial reactions of Co/Si0.76Ge0.24 and Co(Si0.76Ge0.24)/Si0.76Ge0.24 by pulsed KrF laser annealing as a function of energy density and pulse number were studied. For the Co/Si0.76Ge0.24 samples annealed at an energy density of 0.2–0.6 J/cm2, three germanosilicide layers, i.e., amorphous structure and/or nanocrystal, Co(Si1−xGex), and Co(Si1−xGex)2, were successively formed along the film-depth direction. At 0.3 J/cm2 Ge segregated to the underlying Si0.76Ge0.24 film, inducing strain relaxation in the residual Si0.76Ge0.24 film. At 0.8 J/cm2 the reacted region was mostly transformed to a single layer of Co(Si1−xGex)2, whereas Ge further diffused to the Si substrate. At 1.0 J/cm2, constitutional supercooling appeared. Even the Co(Si0.76Ge0.24) film used as the starting material for laser annealing could not prevent the occurrence of constitutional supercooling at energy densities >1.6 J/cm2. The energy densities at which Co(Si1−xGex) transformation to Co(Si1−xGex)2, Ge segregation to the underlying Si, and constitutional supercooling occurred were higher for the Co(Si0.76Ge0.24)/ Si0.76Ge0.24 system than for the Co/Si0.76Ge0.24 system. Higher energy density and/or pulse number enhanced the growth of Co(Si1−xGex)2 film. In the present study, the Co/Si0.76Ge0.24 samples subjected to annealing at 0.2 J/cm2 for 20 pulses produced a smooth Co(Si0.76Ge0.24)2 film without inducing Ge segregation out of the germanosilicide and strain relaxation in the unreacted Si0.76Ge0.24 film.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, F.Y., Zhu, X., Tanner, M.O., and Wang, K.L., Appl. Phys. Lett. 67, 566 (1995).CrossRefGoogle Scholar
2.Presting, H., Kibbel, H., Jaros, M., Turton, R.M., Menczigar, U., Abstreiter, G., and Grimmeiss, H.G., Semicond. Sci. Technol. 1, 1127 (1992).CrossRefGoogle Scholar
3.Thompson, R.D., Tu, K.N., Angillelo, J., Delage, S., and Iyer, S.S., J. Electrochem. Soc. 135, 3161 (1988).CrossRefGoogle Scholar
4.Hong, Q.Z. and Mayer, J.W., J. Appl. Phys. 66, 611 (1989).CrossRefGoogle Scholar
5.Liou, H.K., Wu, X., Gennser, U., Kesan, V.P., Iyer, S.S., Tu, K.N., and Yang, E.S., Appl. Phys. Lett. 60, 577 (1992).CrossRefGoogle Scholar
6.Buxbaum, A., Eizenberg, M., Raizman, A., and Schaffler, F., Appl. Phys. Lett. 59, 665 (1991).CrossRefGoogle Scholar
7.Buxbuam, A., Zolotoyabko, E., Eizenberg, M., and Schaffler, F., Thin Solid Films, 222, 157 (1992).CrossRefGoogle Scholar
8.Thomas, O., Delage, S., d'Heurle, F.M., and Scilla, G., Appl. Phys. Lett. 54, 228 (1989).CrossRefGoogle Scholar
9.Qi, W.J., Li, B.Z., Huang, W.N., Gu, Z.G., Lu, H.Q., Zhang, X.J., Zhang, M., Dong, G.S., Miller, D.C., and Aitken, R.G., J. Appl. Phys. 77, 1086 (1995).CrossRefGoogle Scholar
10.Aldrich, D.B., Chen, Y.L., Sayers, D.E., Nemanich, R.J., Ashburn, S.P., and Ozturk, M.C., J. Appl. Phys. 77, 5107 (1995).CrossRefGoogle Scholar
11.Aldrich, D.B., Heck, H.L., Chen, Y.L., Sayers, D.E., and Nemanich, R.J., J. Appl. Phys. 78, 4958 (1995).CrossRefGoogle Scholar
12.Eyal, A., Brener, R., Beserman, R., Eizenberg, M., Atzmon, Z., Smith, D.J., and Mayer, J.W., Appl. Phys. Lett. 69, 64 (1996).CrossRefGoogle Scholar
13.Freiman, W., Eyal, A., Khait, Y.L., Beserman, R., and Dettmer, K.. Appl. Phys. Lett. 69, 3821 (1996).CrossRefGoogle Scholar
14.Ridgway, M.C., Elliman, R.G., Hauser, N., Baribeau, J.-M., and Jackman, T.E., in Advanced Metallization and Processing for Semiconductor Devices and Circuits—II, edited by Katz, A., Murarka, S.P., Nissim, Y.I., and Harper, J.M.E (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA 1992), p. 857.Google Scholar
15.Lin, F., Sarcona, G., Hatalis, M.K., Cserhati, A. F., Austin, E., and Greve, D.W., Thin Solid Films 250, 20 (1994).CrossRefGoogle Scholar
16.Wang, Z., Chen, Y.L., Ying, H., Nemanich, R.J., and Sayers, D.E., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L.J., and Tu, K.N.. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), p. 397.Google Scholar
17.Juo, J.S., Lin, W.T., Chang, C.Y., Tsai, W.C., and Wang, S.J., Mater. Chem. Phys. 48, 140 (1997).Google Scholar
18.Aubry, V., Meyer, F., Laval, R., Clerc, C., Warren, P., and Dutartre, D., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R.W., Mantl, S., Schowalter, L.J., and Tu, K.N.. (Mater. Res. Soc. Symp. Proc. 320, 1994), p. 299.Google Scholar
19.Hong, Q.Z. and Mayer, J.W., in Advanced Metallizations In Microelectronics, edited by Katz, A., Murarka, S.P., and Appelbaum, A.. (Mater. Res. Soc. Proc. 181, Pittsburgh, PA, 1990), p. 145.Google Scholar
20.Jaquez, E.J., Bair, A.E., and Alford, T.L., Appl. Phys. Lett. 70, 874 (1997).CrossRefGoogle Scholar
21.Cohesion in Metals: Transition Metal Alloys, edited by F.R. Deboer, R. Boom, W.C. Mattens, A.R. Miedema, and A.K. Niessen, (North Holland, Amsterdam, 1988).Google Scholar
22.Poate, J.M., Leamy, H.J., Sheng, T.T., and Celler, G.K., Appl. Phys. Lett. 33, 918 (1978).CrossRefGoogle Scholar
23.Witter, M. and von Allmen, M., J. Appl. Phys. 50, 4786 (1979).CrossRefGoogle Scholar
24.Tung, R.T., Gibson, J.M., Jacobson, D.C., and Poate, J.M., Appl. Phys. Lett. 43, 476 (1983).CrossRefGoogle Scholar
25.D'Anna, E., Leggieri, G., and Luches, A., Appl. Phys. A 45, 325 (1988).CrossRefGoogle Scholar
26.Luo, J.S., Lin, W.T., Chang, C.Y., and Tsai, W.C., J. Appl. Phys. 82, 3621 (1997).CrossRefGoogle Scholar
27.Luo, J.S., Lin, W.T., Chang, C.Y., and Tsai, W.C., Mater. Chem. Phys. 54, 160 (1998).CrossRefGoogle Scholar
28.Chen, D.R., Luo, J.S., Lin, W.T., Chang, C.Y., and Shih, P.S., Appl. Phys. Lett. 73, 1355 (1998).CrossRefGoogle Scholar
29.Abelson, J.R., Sigmon, T.W., Kim, K.B., and Weiner, K.H., Appl. Phys. Lett. 52, 230 (1988).CrossRefGoogle Scholar
30.Kantor, Z., Fogarassy, E., Grob, A., Grob, J.J., Muller, D., Prevot, B., and Stuck, R., Appl. Phys. Lett. 69, 969 (1996).CrossRefGoogle Scholar
31.Boulmer, J., Boucaud, P., Guedj, C., Debarre, D., Bouchier, D., Finkman, E., Prawer, S., Nugent, K., Desmur-Larre, A., Godet, C., and Cabarrocas, P.R., J. Crystal Growth 157, 436 (1995).CrossRefGoogle Scholar
32.Brannon, J., Excimer Laser Ablation and Etching (American Vacuum Society, New York, 1993).Google Scholar
33.D'Anna, E., Leggieri, G., and Luches, A., Appl. Phys. A 45, 325 (1988).CrossRefGoogle Scholar