Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T02:30:16.206Z Has data issue: false hasContentIssue false

Interfacial reactions in the Nb/GaAs system

Published online by Cambridge University Press:  31 January 2011

Kevin J. Schulz
Affiliation:
IBM Application Business Systems, Rochester, Minnesota 55901
Xiang-Yun Zheng
Affiliation:
University of Wisconsin-Madison, Department of Metallurgical and Mineral Engineering, 1509 University Avenue, Madison, Wisconsin 53706
Y. Austin Chang
Affiliation:
University of Wisconsin-Madison, Department of Metallurgical and Mineral Engineering, 1509 University Avenue, Madison, Wisconsin 53706
Get access

Abstract

Solid-state reactions between niobium and gallium arsenide in both thin film and bulk forms were studied in the temperature range 400 to 1000 °C using transmission electron microscopy (TEM), metallography, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Initially Nb4As3 and Nb5Ga3 formed at the interface and grew very slowly. Following an incubation period, NbAs and NbGa, nucleated and grew at rates several orders of magnitude faster than the initial phases. The resulting metastable diffusion path, Nb/NbGa3/NbAs/GaAs, was observed even after relatively long-term annealing and is believed to be kinetically stabilized. Formation of the other Nb–Ga binary compounds as predicted by the phase diagram was inhibited by nucleation and kinetic barriers. The observed reaction sequence is discussed considering the thermodynamics, kinetics, and possible growth mechanisms involved in the reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yu, K. M. Ph.D. Thesis University of California-Berkeley, 1987.Google Scholar
2Ding, J.Lee, B.Gronsky, R.Washburn, J.Chin, D. and Duzer, T. Van, Appl. Phys. Lett. 52, 135 (1988).Google Scholar
3Wu, X. W.Zhang, L. C.Bradley, P.Chin, D. K. and Duzer, T. Van, Appl. Phys. Lett. 50, 288 (1987).Google Scholar
4Suh, K.Park, H. K. and Moazed, K. L.J. Vac. Sci. Technol. B1, 365 (1983).Google Scholar
5Ling, P.Chang, J.K.Lin, M.S. and Lou, J.C.Mater. Res. Soc. Proc. 48, 137 (1985).CrossRefGoogle Scholar
6Mukherjee, S.D.Morgan, D.V. and Howes, M.J.J. Vac. Sci. Technol. 16, 138 (1979).CrossRefGoogle Scholar
7Mukherjee, S. D.Palmstron, C. J. and Smith, J. G.J. Vac. Sci. Technol. 17, 904 (1980).CrossRefGoogle Scholar
8Yu, K.M.Cheung, S.K.Sands, T.Jaklevic, J.M.Cheung, N. W. and Haller, E. E.J. Appl. Phys. 60, 3235 (1986).Google Scholar
9Lin, J. C.Schulz, K. J.Hsieh, K.C. and Chang, Y. A. in High Temperature Materials Chemistry IV.-3. Electronic Materials, edited by Munir, Z.A., Cubicciotti, D. C. and Tagawa, H. (The Electrochem. Soc Inc., Princeton, NJ, 1988). Also submitted to the J. Electrochem. Soc. for publication.Google Scholar
10Kirkaldy, J. S. and Brown, L. C.Can. Met. Quart. 2, 89 (1963).CrossRefGoogle Scholar
11Lin, J.C.Hsieh, K.C.Schulz, K. J. and Chang, Y. A.J. Mater. Res. 3, 148 (1988).CrossRefGoogle Scholar
12Schulz, K. J.Zheng, X.Y. and Chang, Y.A.Mater. Res. Soc. Symp. Proc. 108 (1987).CrossRefGoogle Scholar
13Kakibayashi, H. and Nagata, F.Jpn. J. Appl. Phys. 24, L905 (1985).CrossRefGoogle Scholar
14Yu, M.R.Zhu, F.R.Wang, X.Wang, B.Q.Zao, K.Pu, P. S. and Lei, C. L.Chin. J. Semicond. 6, 55 (1985).Google Scholar
15d'Heurle, F.M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
16d'Heurle, F.M. and Gas, P.J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
17Sands, T.Keramidas, V. G.Washburn, J. and Gronsky, R.Appl. Phys. Lett. 48, 402 (1986).CrossRefGoogle Scholar
18Lin, J. C.Zheng, X.Y.Hsieh, K. C. and Chang, Y. A.Mater. Res. Soc. Symp. Proc. 102 (1987).CrossRefGoogle Scholar
19Schulz, K. J. Ph.D. Thesis University of Wisconsin-Madison, 1988.Google Scholar
20Shiau, F.Y.Chang, Y.A. and Chen, L.J.J. Electronic Mater. 17, 433 (1988); also F.Y. Shiau Y. Zuo X.Y. Zheng J.C. Lin and Y.A. Chang Mater. Res. Soc. Symp. Proc. 119 (1988).CrossRefGoogle Scholar
21Ronay, M.Appl. Phys. Lett. 42, 577 (1983).CrossRefGoogle Scholar
22Feschotte, P. and Spitz, E. L.J. Less-Common Metals 37, 233 (1974).CrossRefGoogle Scholar
23Rundqvist, S.Carlsson, B. and Pontchour, C.Acta Chem. Scand. 23, 2188 (1969).Google Scholar
24Gosele, U. and Tu, K. N.J. Appl. Phys. 53, 3252 (1982).Google Scholar
25Loo, F. J. J. van and Rieck, G. D.Acta Metall. 21, 61 (1973).Google Scholar
26Steeb, S. and Keppeler, R.Z. Naturforsch. 24a, 1601 (1969).Google Scholar
27Wagner, C.J. Electrochem. Soc. 103, 571 (1956).Google Scholar
28Rapp, R. A.Ezis, A. and Yurek, G. J.Metall. Trans. 4, 1283 (1973).CrossRefGoogle Scholar
29Clark, J. B. and Rhines, F. N.Trans. ASM 51, 199 (1959).Google Scholar
30Sands, T.Keramidas, V. G.Yu, K. M.Washburn, J. and Krishnan, K.J. Appl. Phys. 62, 2070 (1987).Google Scholar