Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:22:58.010Z Has data issue: false hasContentIssue false

Intercalation of Rhodamine 6G and Oxazine 4 into Oriented Clay Films and Their Alignment

Published online by Cambridge University Press:  31 January 2011

Guangming Chen
Affiliation:
Advanced Materials Laboratory (AML), National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Nobuo Iyi*
Affiliation:
Advanced Materials Laboratory (AML), National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Ryo Sasai
Affiliation:
Research Center for Advanced Waste and Emission Management (ResCWE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Taketoshi Fujita
Affiliation:
Advanced Materials Laboratory (AML), National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Kenji Kitamura
Affiliation:
Advanced Materials Laboratory (AML), National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Extract

The cationic dyes rhodamine 6G (R6G) and oxazine 4 (Ox4) were intercalated into oriented lithium hectorite (LiHT, a synthetic fluor-mica) films by ion-exchange, and their orientation was studied by x-ray and polarized spectroscopy. Orientation of dyes was determined by basal spacing obtained by x-ray diffraction data, showing that angles of the long axis were 60° for R6G and 47° for Ox4 against the layer. Polarized ultraviolet-visible spectroscopy showed that the high-order H-aggregate of R6G and Ox4 were oriented at 64° and 52° against layers, respectively; other states of dyes were oriented at much lower angles. The interlayer distance was mostly determined by dimensions of the high-order H-aggregate.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Theng, B.K.G., in The Chemistry of Clay-Organic Reactions (Adam Hilger, London, United Kingdom, 1974).Google Scholar
2.Chen, G., Han, B., and Yan, H., J. Colloid Interf. Sci. 201, 158 (1998).CrossRefGoogle Scholar
3.Chen, G., Song, X., Zhao, Y., Han, B., and Yan, H., J. Colloid Interf. Sci. 186, 206 (1997).CrossRefGoogle Scholar
4.Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., and Kamingaito, O., J. Mater. Res. 8, 1174 (1993).CrossRefGoogle Scholar
5.Chen, G., Liu, S., Zhang, S., and Qi, Z., Macromol. Rapid Commun. 21, 746 (2000).3.0.CO;2-K>CrossRefGoogle Scholar
6.Chen, G., Liu, S., Chen, S., and Qi, Z., Macromol. Chem. Phys. 202, 1189 (2001).3.0.CO;2-M>CrossRefGoogle Scholar
7.Chen, G., Qi, Z., and Shen, D., J. Mater. Res. 15, 351 (2000).CrossRefGoogle Scholar
8.Boyd, S.A., Lee, J., and Mortland, M.M., Nature 333, 345 (1988).CrossRefGoogle Scholar
9.Lee, J., Crum, J.R., and Boyd, S.A., Environ. Sci. Technol. 23, 1365 (1989).CrossRefGoogle Scholar
10.Rusling, J.F., Ahmadai, M.A., and Hu, N., Langmuir 8, 2455 (1992).CrossRefGoogle Scholar
11.Ogawa, M., Inagaki, M., Kodama, N., Kuroda, K., and Kato, C., J. Phys. Chem. 97, 3819 (1993).CrossRefGoogle Scholar
12.Fujita, T., Iyi, N., and Klapyta, Z., Mater. Res. Bull. 33, 1693 (1998).CrossRefGoogle Scholar
13.Chen, G., Pan, J., Han, B., and Yan, H., J. Dispers. Sci. Technol. 20, 1179 (1999).CrossRefGoogle Scholar
14.Estévez, M.J. Tapia, Arbeloa, F. López, Arbeloa, T. López, Arbeloa, I. López, and Schoonheydt, R.A., Clay Miner. 29, 105 (1994).CrossRefGoogle Scholar
15.Estévez, M.J. Tapia, Arbeloa, F. López, López, T., and Arbeloa, I. Lo´pez, J. Colloid Interf. Sci. 162, 412 (1994).CrossRefGoogle Scholar
16.Grauer, Z., Malter, A.B., Yariv, S., and Avnir, D., Colloids Surf. 25, 41 (1987).CrossRefGoogle Scholar
17.Yariv, S. and Nasser, A., J. Chem. Soc., Faraday Trans. 86, 1593 (1990).CrossRefGoogle Scholar
18.Yariv, S., Gosh, D.K., and Helper, L.G., J. Chem. Soc., Faraday Trans. 87, 1201 (1991).CrossRefGoogle Scholar
19.Cenens, J. and Schoonheydt, R.A., Clays Clay Miner. 36, 214 (1988).CrossRefGoogle Scholar
20.Schoonheydt, R.A. and Heughebaert, L., Clay Miner. 27, 91 (1992).CrossRefGoogle Scholar
21.Aznar, A.J., Casal, B., Hitzky, E. Ruiz, Arbeloa, F. López, Arbeloa, I. López, and Alvarez, A., Clay Miner. 23, 205 (1992).Google Scholar
22.Margulies, L. and Rozen, H., J. Mol. Struct. 141, 219 (1986).CrossRefGoogle Scholar
23.Bujdák, J. and Komadel, P., J. Phys. Chem. B 101, 9065 (1997).CrossRefGoogle Scholar
24.Bujdák, J., Janek, M., Madejová, J., and Komadel, P., Faraday Trans. 94, 3487 (1998).CrossRefGoogle Scholar
25.Fujita, T., Iyi, N., Kosugi, T., Ando, A., Deguchi, T., and Sota, T., Clays Clay Miner. 45, 177 (1997).CrossRefGoogle Scholar
26.Sasai, R., Fujita, T., Iyi, N., Itoh, H., and Takagi, K. (2001, unpublished).Google Scholar
27.Schollenberger, C.J. and Simon, R.N., Soil Sci. 59, 13 (1946).CrossRefGoogle Scholar
28.Grauer, Z., Avnir, D., and Yariv, S., Can. J. Chem. 62, 1889 (1984).CrossRefGoogle Scholar
29.Kasha, M., Radiat. Res. 20, 55 (1963).CrossRefGoogle Scholar
30.Sonobe, K., Kikuta, K., and Takagi, K., Chem. Mater. 11, 1089 (1999).CrossRefGoogle Scholar
31.Sasai, R., Ogiso, H., Shindachi, I., Shichi, T., and Takagi, K., Tetrahedron 56, 6979 (2000).CrossRefGoogle Scholar